A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and da...A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.展开更多
This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided in...This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.展开更多
In order to improve the throughput performance of the secondary users (SUs) in the cognitive radio (CR) environment, a quality of service (QoS) based media access control (MAC) protocol is proposed. In this pr...In order to improve the throughput performance of the secondary users (SUs) in the cognitive radio (CR) environment, a quality of service (QoS) based media access control (MAC) protocol is proposed. In this protocol, the CR node maps the channel state as a vector, and the transmitter and the receiver obtain the final channel map through an AND operation to prepare for an optional channel set. Data from the upper application layer are classified into two priority levels according to the QoS requirement. The data of each level relate to different contention windows so that the priority of real time data can be guaranteed. A two-dimensional discrete-time Markov chain is utilized to evaluate the system performance, and mathematical expressions of the system throughput are derived. Simulation results show that compared with the IEEE 802. 11 distributed coordination function (DCF), the proposed MAC protocol can achieve higher throughput.展开更多
In view of the problem that existing Media Access Control(MAC) protocols can not pro-vide real-time monitor on network conditions,this paper puts forward a new MAC protocol- Predict and Feedback MAC(PFMAC) which can p...In view of the problem that existing Media Access Control(MAC) protocols can not pro-vide real-time monitor on network conditions,this paper puts forward a new MAC protocol- Predict and Feedback MAC(PFMAC) which can predict the channel's congestion level reasonably.The dominant idea of the new scheme is to record the channel's busy or idle situation in the backoff stage by sending Sensor Nodes(SNs),and according to the congestion level every SN can change the contention window adaptively when send packets successfully to minimize collisions,saving energy and channel resources.The result of simulation shows that compared with other MAC protocols,the PFMAC protocol can improve network throughput and reduce energy consumption in high speed network en-vironment.展开更多
This paper proposes a novel multichannel medium access control (MAC) protocol based on CDMA that improves network performance and reduces collision probability in wireless ad hoc networks. In the scheme, the code ch...This paper proposes a novel multichannel medium access control (MAC) protocol based on CDMA that improves network performance and reduces collision probability in wireless ad hoc networks. In the scheme, the code channel is divided into common channel, broadcast channel and several data channels. Simulation results show that the proposed protocol can achieve significantly better performance than the IEEE 802.11 standard.展开更多
Medium access control( MAC) protocol of underwater acoustic communication network is a key technology for underwater acoustic networks( UANs). Most of the MAC protocols for wireless terrestrial communication networks ...Medium access control( MAC) protocol of underwater acoustic communication network is a key technology for underwater acoustic networks( UANs). Most of the MAC protocols for wireless terrestrial communication networks have been designed with negligible propagation delay. If it is deployed directly in an underwater environment,the UANs will perform inefficiently. In this paper,the characteristics of underwater acoustic channel are modeled and simulated by using the OPNET simulation tool,which are the speed of sound, propagation loss, and four sources for ambient noise: the turbulence,shipping,wind driven waves and thermal noise. The performance of pure Aloha( P-Aloha),carrier sense multiple access with collision avoidance( CSMA / CA) and multiple access collision avoidance for wireless local area network( MACAW) protocols in underwater acoustic channel environment are evaluated. The different performance of protocols in underwater environment is compared in the simulation.展开更多
According to analyze the facade phenomenon of wire-less sensor networks(WSNs),this paper proposes a feasible method to state clearly and improve the power control efficiency of wire-less sensor networks(WSNs). One...According to analyze the facade phenomenon of wire-less sensor networks(WSNs),this paper proposes a feasible method to state clearly and improve the power control efficiency of wire-less sensor networks(WSNs). One of the crucial problems for WSNs is the design of medium access control (MAC) protocol. Our method want to adjust the activities of the MAC protocols control to achieve the enery conservation when the wireless communication module of sensor nodes is running, which is the major consumer of energy consumed by sensors energy. The energy efficiency of MAC protocol makes a strong impact on the network performance. To some extent,our research work describes and analyze the sources of energy consumption in MAC layer and simultaneously present an optimal method for the design of MAC protocol. Then we discusses some factors impacting on the performance of MAC protocol and metrics of performance evaluation. Eventually, the coming research direction is summarized.展开更多
Many energy efficiency asynchronous duty-cycle MAC(media access control) protocols have been proposed in recent years.However,in these protocols,wireless sensor nodes almost choose their wakeup time randomly during th...Many energy efficiency asynchronous duty-cycle MAC(media access control) protocols have been proposed in recent years.However,in these protocols,wireless sensor nodes almost choose their wakeup time randomly during the operational cycle,which results in the packet delivery latency increased significantly on the multiple hops path.To reduce the packet delivery latency on multi-hop path and energy waste of the sender's idle listening,a new low latency routing-enhanced asynchronous duty-cycle MAC protocol was presented,called REA-MAC.In REA-MAC,each sensor node decided when it waked up to send the beacon based on cross-layer routing information.Furthermore,the sender adaptively waked up based on the relationship between the transmission request time and the wakeup time of its next hop node.The simulation results show that REA-MAC reduces delivery latency by 60% compared to RI-MAC and reduces 8.77% power consumption on average.Under heavy traffic,REA-MAC's throughput is 1.48 times of RI-MAC's.展开更多
In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmis-sion count optimization based on env...In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmis-sion count optimization based on environment-aware to improve packet relay probability. The scheme discriminates the types of packet loss in wireless link by means of environment information and selects the retransmission count by taking the IEEE 802.11 wireless channel characteristics into consideration. Furthermore, the maximum retransmission count of MAC is adjusted adaptively. Extensive simulations demonstrate that the proposed scheme significantly reduces packet collision probability and packet loss rate, and thus improves network throughput.展开更多
Traditional underwater acoustic communication networks(UACNs)generally use omnidirectional transmission technology that causes a large number of data-packet collisions,thus resulting in low network throughput and high...Traditional underwater acoustic communication networks(UACNs)generally use omnidirectional transmission technology that causes a large number of data-packet collisions,thus resulting in low network throughput and high end-to-end delays.Compared with omnidirectional transmission technology,directional technology only sends and receives data packets in a specified direction.This can significantly reduce the probability of collisions and improve network performance.However,it also causes a deafness problem,which occurs when the sending node sends a data packet to the receiving node but the receiving node is unable to reply to the sender,because its antenna beam is closed.To resolve this issue,this study proposes a collision classification media access control(CC-MAC)protocol for UACNs.With this protocol,the underwater acoustic channel is divided into two subchannels,and the nodes transmit corresponding data types on them.The sending node can estimate the current status of the receiving node(i.e.,no collision,normal collision,deafness)according to the type of the data packet received and the sub-channel it arrived on,and it can choose correct options to improve network efficiency.Finally,we verify the performance of CC-MAC via simulations,showing that the protocol achieved higher network throughput and lower end-toend delays.展开更多
针对现有能够应用于太赫兹超高速无线网络的能量和频谱感知的媒介接入控制(energy and spectrum-aware media access control,ES-MAC)及IEEE802.15.3c协议存在的时隙申请量未及时更新、超帧结构不合理及分配时隙时未合并同一对节点之间...针对现有能够应用于太赫兹超高速无线网络的能量和频谱感知的媒介接入控制(energy and spectrum-aware media access control,ES-MAC)及IEEE802.15.3c协议存在的时隙申请量未及时更新、超帧结构不合理及分配时隙时未合并同一对节点之间的时隙请求等问题,提出了一种高吞吐量低时延MAC(high throughput low delay MAC,HLMAC)协议。通过设计一种新的超帧结构,使节点及时得到时隙分配信息,大大降低数据接入时延;通过更新时隙请求量和合并同一对节点的时隙请求,增加了数据发送量,提高了网络吞吐量。理论分析表明了HLMAC协议的有效性,仿真结果显示它比ES-MAC协议增加了65.7%的网络吞吐量,同时降低了30%的接入时延。展开更多
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.
基金Supported by the Science Foundation of Shanghai Mu-nicipal Commission of Science and Technology under contract 045115012.
文摘This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.
基金The National Science and Technology Major Project( No. 2010ZX03006-002-01 )the National Basic Research Program of China ( 973 Program) ( No. 2011CB302905)the Science and Technology Support Program of Jiangsu Province ( No. BE2011177)
文摘In order to improve the throughput performance of the secondary users (SUs) in the cognitive radio (CR) environment, a quality of service (QoS) based media access control (MAC) protocol is proposed. In this protocol, the CR node maps the channel state as a vector, and the transmitter and the receiver obtain the final channel map through an AND operation to prepare for an optional channel set. Data from the upper application layer are classified into two priority levels according to the QoS requirement. The data of each level relate to different contention windows so that the priority of real time data can be guaranteed. A two-dimensional discrete-time Markov chain is utilized to evaluate the system performance, and mathematical expressions of the system throughput are derived. Simulation results show that compared with the IEEE 802. 11 distributed coordination function (DCF), the proposed MAC protocol can achieve higher throughput.
基金Supported by the 948 Project (2012-4-21)the Ph.D.Programs Foundation of Ministry of Education of China(20100062120008)the Scientific Research Fund of Heilongjiang Provincial Education Department(11553022)
文摘In view of the problem that existing Media Access Control(MAC) protocols can not pro-vide real-time monitor on network conditions,this paper puts forward a new MAC protocol- Predict and Feedback MAC(PFMAC) which can predict the channel's congestion level reasonably.The dominant idea of the new scheme is to record the channel's busy or idle situation in the backoff stage by sending Sensor Nodes(SNs),and according to the congestion level every SN can change the contention window adaptively when send packets successfully to minimize collisions,saving energy and channel resources.The result of simulation shows that compared with other MAC protocols,the PFMAC protocol can improve network throughput and reduce energy consumption in high speed network en-vironment.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.045115012), and the Shanghai Leading Academic Discipline Project (Grant No.T0102).
文摘This paper proposes a novel multichannel medium access control (MAC) protocol based on CDMA that improves network performance and reduces collision probability in wireless ad hoc networks. In the scheme, the code channel is divided into common channel, broadcast channel and several data channels. Simulation results show that the proposed protocol can achieve significantly better performance than the IEEE 802.11 standard.
基金National Natural Science Foundations of China(Nos.60872073,6097501,and 51075068)the Doctoral Fund of Ministry of Education of China(No.20110092130004)the Research Foundation and Education Bureau of Anhui Province of China(No.KJ2009B137)
文摘Medium access control( MAC) protocol of underwater acoustic communication network is a key technology for underwater acoustic networks( UANs). Most of the MAC protocols for wireless terrestrial communication networks have been designed with negligible propagation delay. If it is deployed directly in an underwater environment,the UANs will perform inefficiently. In this paper,the characteristics of underwater acoustic channel are modeled and simulated by using the OPNET simulation tool,which are the speed of sound, propagation loss, and four sources for ambient noise: the turbulence,shipping,wind driven waves and thermal noise. The performance of pure Aloha( P-Aloha),carrier sense multiple access with collision avoidance( CSMA / CA) and multiple access collision avoidance for wireless local area network( MACAW) protocols in underwater acoustic channel environment are evaluated. The different performance of protocols in underwater environment is compared in the simulation.
基金supported by National Natural Science Foundation of China(61304263,61233007)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Arid
基金the National Natural Science Foundation of China (90612014)the National High-Technology Research and Development Program of China (863 Program)(2006AA01Z101)
文摘According to analyze the facade phenomenon of wire-less sensor networks(WSNs),this paper proposes a feasible method to state clearly and improve the power control efficiency of wire-less sensor networks(WSNs). One of the crucial problems for WSNs is the design of medium access control (MAC) protocol. Our method want to adjust the activities of the MAC protocols control to achieve the enery conservation when the wireless communication module of sensor nodes is running, which is the major consumer of energy consumed by sensors energy. The energy efficiency of MAC protocol makes a strong impact on the network performance. To some extent,our research work describes and analyze the sources of energy consumption in MAC layer and simultaneously present an optimal method for the design of MAC protocol. Then we discusses some factors impacting on the performance of MAC protocol and metrics of performance evaluation. Eventually, the coming research direction is summarized.
基金Projects(61103011,61170261) supported by the National Natural Science Foundation of China
文摘Many energy efficiency asynchronous duty-cycle MAC(media access control) protocols have been proposed in recent years.However,in these protocols,wireless sensor nodes almost choose their wakeup time randomly during the operational cycle,which results in the packet delivery latency increased significantly on the multiple hops path.To reduce the packet delivery latency on multi-hop path and energy waste of the sender's idle listening,a new low latency routing-enhanced asynchronous duty-cycle MAC protocol was presented,called REA-MAC.In REA-MAC,each sensor node decided when it waked up to send the beacon based on cross-layer routing information.Furthermore,the sender adaptively waked up based on the relationship between the transmission request time and the wakeup time of its next hop node.The simulation results show that REA-MAC reduces delivery latency by 60% compared to RI-MAC and reduces 8.77% power consumption on average.Under heavy traffic,REA-MAC's throughput is 1.48 times of RI-MAC's.
基金Supported by the National Natural Science Foundation of China (No. 60972038)the Jiangsu Province Universities Natural Science Research Key Grant Project (07KJA-51006)+1 种基金the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (N200911)Jiangsu Province Graduate In-novative Research Plan (CX09B_149Z)
文摘In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmis-sion count optimization based on environment-aware to improve packet relay probability. The scheme discriminates the types of packet loss in wireless link by means of environment information and selects the retransmission count by taking the IEEE 802.11 wireless channel characteristics into consideration. Furthermore, the maximum retransmission count of MAC is adjusted adaptively. Extensive simulations demonstrate that the proposed scheme significantly reduces packet collision probability and packet loss rate, and thus improves network throughput.
基金This work was supported by the National Key Research and Development Program of China(No.2018YFC0308500)National Natural Science Foundation of China(Nos.61901273,11774074,61771152,U1806201 and 11974090)+1 种基金Natural Science Foundation of Heilongjiang Province of China(No.YQ2019F002)Acoustic Science and Technology Laboratory,Science and Technology on Underwater Information and Control Laboratory,and by the Young Elite Scientists Sponsorship by CAST.
文摘Traditional underwater acoustic communication networks(UACNs)generally use omnidirectional transmission technology that causes a large number of data-packet collisions,thus resulting in low network throughput and high end-to-end delays.Compared with omnidirectional transmission technology,directional technology only sends and receives data packets in a specified direction.This can significantly reduce the probability of collisions and improve network performance.However,it also causes a deafness problem,which occurs when the sending node sends a data packet to the receiving node but the receiving node is unable to reply to the sender,because its antenna beam is closed.To resolve this issue,this study proposes a collision classification media access control(CC-MAC)protocol for UACNs.With this protocol,the underwater acoustic channel is divided into two subchannels,and the nodes transmit corresponding data types on them.The sending node can estimate the current status of the receiving node(i.e.,no collision,normal collision,deafness)according to the type of the data packet received and the sub-channel it arrived on,and it can choose correct options to improve network efficiency.Finally,we verify the performance of CC-MAC via simulations,showing that the protocol achieved higher network throughput and lower end-toend delays.
文摘针对现有能够应用于太赫兹超高速无线网络的能量和频谱感知的媒介接入控制(energy and spectrum-aware media access control,ES-MAC)及IEEE802.15.3c协议存在的时隙申请量未及时更新、超帧结构不合理及分配时隙时未合并同一对节点之间的时隙请求等问题,提出了一种高吞吐量低时延MAC(high throughput low delay MAC,HLMAC)协议。通过设计一种新的超帧结构,使节点及时得到时隙分配信息,大大降低数据接入时延;通过更新时隙请求量和合并同一对节点的时隙请求,增加了数据发送量,提高了网络吞吐量。理论分析表明了HLMAC协议的有效性,仿真结果显示它比ES-MAC协议增加了65.7%的网络吞吐量,同时降低了30%的接入时延。
基金Supported by the Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0657(新世纪优秀人才支持计划)the Foundation for Distinguished Young Scientists of Hubei Province of China under Grant No.2006ABB028(湖北省青年杰出人才基金)
基金Supported by the National High-Tech Research and Development Plan of China under Grant No.2005AA121570(国家高技术研究发展计划(863))the National Basic Research Program of China under Grant No.2003CB314802(国家重点基础研究发展计划(973))