The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent...The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.展开更多
To analyze and depict complicated fluid behaviors in fractured porous media with variably permeable matrix,an integrated discrete computational algorithm is proposed based on lattice Boltzmann method(LBM).This paper...To analyze and depict complicated fluid behaviors in fractured porous media with variably permeable matrix,an integrated discrete computational algorithm is proposed based on lattice Boltzmann method(LBM).This paper combines with the external force model and statistical material physics to effectively describe the feature changes while the fluid passes through the fractures within the permeable matrix.As an application example,a two dimensional rock sample is reconstructed using the digital image and characterized with different feature values at each LBM grid to distinguish pores,impermeable and permeable matrix by stating its local physical property.Compared with the conventional LBM,the results demonstrate the advantages of proposed algorithm in modeling fluid flow phenomenon in fractured porous media with variably permeable matrix.展开更多
Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular...Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular media as a whole. This paper presents a coupled computational fluid dynamics and discrete element method (CFD-DEM) approach for this purpose. The granular particle system is modeled by DEM, while the fluid flow is simulated by solving the locally averaged Navier-Stokes equation with CFD. The coupling is considered by exchanging such interaction forces as drag force and buoyancy force between the DEM and CFD. The approach is benchmarked by two classic geomechanics problems for which analytical solutions are available, and is further applied to the prediction of sand heap formation in water through hopper flow. It is demonstrated that the key characteristic of granular materials interacting with pore water can be successfully captured by the proposed method.展开更多
In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equ...In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P-and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P-and S-wave equations in the curvilinear coordinates system are derived to realize the P-and S-wave separation method.展开更多
The governing equations as well as boundary land initial conditions for nonlinear dynamic response problems of viscous fluid-saturated biphase porous medium model, based on mixture theory, are presented. With Galerkin...The governing equations as well as boundary land initial conditions for nonlinear dynamic response problems of viscous fluid-saturated biphase porous medium model, based on mixture theory, are presented. With Galerkin weighted residual method the corresponding nonlinear dynamic penalty finite element equation, in which the dependencies of volume fraction and permeation coefficients an deformation are included, is obtained. The iteration solution method of the nonlinear system equation is also discussed. As a numerical example, the dynamic response of a porous medium column under impulsive loading action is analyzed with the developed finite element program. The numerical results demonstrate the efficiency and correctness of the method.展开更多
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibi...In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.展开更多
A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function w...A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function with three parameters, a mass conservation law and a concept of turbulent ellipses. A solution to the model was obtained by using a finite difference method and an extrapolation method. Formulas of calculating development index not only before but also after water breaks through an oil well in the condition of two-phase fluid nonlinear flow in the media were derived. An example was discussed. Water saturation distribution was presented. The moving law of drainage front was found. Laws of change of pressure difference with time were recognized. Results show that there is much difference of water saturation distribution between nonlinear flow and linear flow; that drainage front by water moves faster, water breaks through sooner and the index gets worse because of the nonlinear flow; and that dimensionless pressure difference gets larger at the same dimensionless time and difficulty of oil development becomes bigger by the nonlinear flow. Thus, it is necessary that influence of nonlinear flow on development indexes of the oil fields be taken into account. The results provide water-flooding development of the oilfields with scientific basis.展开更多
Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting ...Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting on fluid particles is modified by axiding relative permeability in Nithiarasu's expression with an axiditional surface tension term. As a test of this model, we simulate the phase separation for the case of two immiscible fluids. The numerical results show that the two coupling relative permeability coefficients K12 and K21 have the same magnitude, so the linear flux-forcing relationships satisfy Onsager reciprocity. Phase separation phenomenon is shown with the time evolution of density distribution and bears a strong similarity to the results obtained from other numerical models and the flows in sands. At the same time, the dynamical rules in this model are local, therefore it can be run on massively parallel computers with well computational efficiency.展开更多
A proper form of the Rayleigh number, containing the geometric mean of the vertical and horizontal permeabilities was obtained. The critical value for the onset of stable convection was found. The results proved analy...A proper form of the Rayleigh number, containing the geometric mean of the vertical and horizontal permeabilities was obtained. The critical value for the onset of stable convection was found. The results proved analytically and numerically that anisotropy in permeability resists the initiation of hydrothermal convection. The equivalence between homogeneously anisotropic media and multiply fractured media was also investigated. It was confirmed that multiply fractured models are comparable to anisotropic models as long as they have the same averaged horizontal or vertical permeabilities and other physical parameters.展开更多
The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element meth...The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method.展开更多
Modeling reservoir permeability is one of the crucial tasks in reservoir simulation studies.Traditionally,it is done by kriging-based methods.More rigorous modeling of the permeability results in more reliable outputs...Modeling reservoir permeability is one of the crucial tasks in reservoir simulation studies.Traditionally,it is done by kriging-based methods.More rigorous modeling of the permeability results in more reliable outputs of the reservoir models.Recently,a new category of geostatistical methods has been used for this purpose,namely multiple point statistics(MPS).By this new category of permeability modeling methods,one is able to predict the heterogeneity of the reservoir permeability as a continuous variable.These methods consider the direction of property variation in addition to the distances of known locations of the property.In this study,the reservoir performance of a modified version of the SPE 10 solution project as a pioneer case is used for investigating the efficiency of these methods and paralleling them with the kriging-based one.In this way,the permeability texture concept is introduced by applying some MPS methods.This study is accomplished in the conditions of real reservoir dimensions and velocities for the whole reservoir life.A continuous training image is used as the input of calculation for the permeability modeling.The results show that the detailed permeability of the reservoir as a continuous variable makes the reservoir simulation show the same fluid front movement and flooding behavior of the reservoir similar to the reference case with the same permeability heterogeneity.Some MPS methods enable the reservoir simulation to reproduce the fluid flow complexities such as bypassing and oil trapping during water flooding similar to the reference case.Accordingly,total oil production is predicted with higher accuracy and lower uncertainty.All studied cases are identical except for the permeability texture.Even histograms and variograms of permeabilities for the studied reservoir are quite similar,but the performance of the reservoir shows that kriging-based method results have slightly less accuracy than some MPS methods.Meanwhile,it results in lower uncertainty in outputs for this water flooding case performance.展开更多
The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding...The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.展开更多
In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the...In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the form of theorems. Two examples have been taken and streamline patterns are shown for the solutions.展开更多
In vitro tissue culture of hard woody, endangered, medicinal plant Coscinium fenestratum is most challenging to plant tissue culturists. In the present study, petiole and leaf explants of Coscinium fenestratum were in...In vitro tissue culture of hard woody, endangered, medicinal plant Coscinium fenestratum is most challenging to plant tissue culturists. In the present study, petiole and leaf explants of Coscinium fenestratum were induced to form callus when cultured on vermicompost extract media along with coelomic fluid. Suspension medium was developed using vermicompost extract and coelomic fluid in 3:1 ratio. Phytochemical analysis of the alkaloid berberine was confirmed from callus, suspension cell culture and suspension medium by Thin Layer Chromatography and High Performance Liquid Chromatography. Vermicompost and its extracts with coelomic fluid have shown maximum (100 per cent) response of callus induction. Callus mass enlarged with increasing concentration of coelomic fluid and callus growth was assessed from the biomass. Incubation of culture tubes in dark supported callus development significantly. The Rf value of 0.36 confirmed the presence of berberine by Thin Layer Chromatography. Qualitative analysis confirmed the presence of alkaloid berberine with the retention time of 2.8 minutes similar to that of standard reference sample from Sigma chemicals, USA. The suspension medium turned deep yellow because of the release of the alkaloid. Vermicompost and its extracts along with coelomic fluid have shown the economical approach for micropropagation of economically and medicinally important plants.展开更多
Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main facto...Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper.展开更多
Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeabili...Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.展开更多
In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues, while there is no in vivo practical dynamical measurement of the interstitial fluid flow veloci...In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues, while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array, we set up a porous media model simulating the flow field with FLUENT software, studied the shear stress on interstitial cells' surface due to the interstitial fluid flow, and analyzed the effect of flow on protein space distribution around the ceils. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells, up to 30 Pa or so, which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries, blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion, numerical simulation provides an effective way for in vivo dynamic interstitial velocity research, helps to set up the vivid subtle interstitial flow environment of cells, and is beneficial to understanding the physiological functions of interstitial fluid flow.展开更多
The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusio...The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusion process. Based on fractal geometry and the constitutive equation of Herschel-Bulkley fluid, an analytical model for Herschel-Bulkley fluid flowing in a porous geo-material with fractal characteristics is derived. The proposed model provides a theoretical basis for grouting design and helps to understand the chemical fluid flow in soil in real environments. The results indicate that the predictions from the proposed model show good consistency with the literature data and application results. Grouting pressure decreases with increasing diffusion distance. Under the condition that the chemical fluid flows the same distance, the grouting pressure undergoes almost no change at first and then decreases nonlinearly with increasing tortuosity dimension. With increasing rheological index, the pressure difference first decreases linearly, then presents a trend of nonlinear decrease, and then decreases linearly again. The pressure difference gradually increases with increasing viscosity and yield stress of the chemical fluid. The decreasing trend of the grouting pressure difference is non-linear and rapid for porosity Φ>0.4, while there is a linear and slow decrease in pressure difference for high porosity.展开更多
Sediment-hosted hydrate reservoir often contains saturated pore fluid, which changes the heat transfer and mass transfer characteristics of the hydrate reservoir. The exploitation of hydrate under saturated pore fluid...Sediment-hosted hydrate reservoir often contains saturated pore fluid, which changes the heat transfer and mass transfer characteristics of the hydrate reservoir. The exploitation of hydrate under saturated pore fluid using depressurization is simulated experimentally to investigate the influence of particle size of porous media, dissociation temperature, pressure drop and injected fluid type on gas production behavior. Homogeneous methane hydrate was firstly formed in frozen quartz sand. With the formed hydrate sample, hydrate dissociation experiments by depressurization were conducted. The test results showed that the gas production rate of hydrate under saturated pore fluid was substantially influenced by the particle size, the pressure drop and the injected fluid type, while it was influenced little by the dissociation temperature. The hydrate dissociates faster under larger pressure drop and in the presence of smaller porous media within the experimental region. The dissociation rate increases with an increasing fluid salinity in the initial stage, while it decreases in the later stage. The increase of gas diffusion resistance resulted from ionic hydration atmosphere in saturated chloride solution impeded the dissociation of hydrate. It can be solved by increasing the pressure drop and decreasing the fluid salinity in the process of gas recovery from hydrate reservoir.展开更多
The fractai expressions for flow rate and hydraulic conductivity for power-law fluids in a single capillary are derived based on the fractai nature of tortuous capillaries. Every parameter in the proposed expressions ...The fractai expressions for flow rate and hydraulic conductivity for power-law fluids in a single capillary are derived based on the fractai nature of tortuous capillaries. Every parameter in the proposed expressions has clear physical meaning. The flow rate and hydraulic conductivity for power-law fluids are found to be related to the tortuosity fractal dimension and the power-law index. The flow rate for power-law fluids increases with the increasing power-law index but decreases with the increasing tortuosity fractal dimension. Good agreement between the model predictions for flow in a fractai capillary and in a converging-diverging duct is obtained. The results suggest that the fractal capillary model can be used to model the power-law fluids with different rheologicai properties.展开更多
基金supported by the Basic Research on Drilling & Completion of Critical Wells for Oil & Gas (Grant No. 51221003)National Science Fund for Petrochemical Industry (Project No. U1262201)+2 种基金"863" National Project (Project No. 2013AA064803)National Science Fund for Distinguished Young Scholars (Project No. 50925414)National Natural Science Foundation (Project No. 51074173)
文摘The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.
基金supported by the Australian Research Council(ARC DP066620,LP0560932,LX0989423 and DP110103024)
文摘To analyze and depict complicated fluid behaviors in fractured porous media with variably permeable matrix,an integrated discrete computational algorithm is proposed based on lattice Boltzmann method(LBM).This paper combines with the external force model and statistical material physics to effectively describe the feature changes while the fluid passes through the fractures within the permeable matrix.As an application example,a two dimensional rock sample is reconstructed using the digital image and characterized with different feature values at each LBM grid to distinguish pores,impermeable and permeable matrix by stating its local physical property.Compared with the conventional LBM,the results demonstrate the advantages of proposed algorithm in modeling fluid flow phenomenon in fractured porous media with variably permeable matrix.
基金supported by the Research Grants Council of Hong Kong (622910)
文摘Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular media as a whole. This paper presents a coupled computational fluid dynamics and discrete element method (CFD-DEM) approach for this purpose. The granular particle system is modeled by DEM, while the fluid flow is simulated by solving the locally averaged Navier-Stokes equation with CFD. The coupling is considered by exchanging such interaction forces as drag force and buoyancy force between the DEM and CFD. The approach is benchmarked by two classic geomechanics problems for which analytical solutions are available, and is further applied to the prediction of sand heap formation in water through hopper flow. It is demonstrated that the key characteristic of granular materials interacting with pore water can be successfully captured by the proposed method.
基金financially supported by the Natural Science Foundation of China(No.41774133)the Open Funds of SINOPEC Key Laboratory of Geophysics(No.wtyjy-wx2017-01-04)National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05024-003-011)
文摘In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P-and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P-and S-wave equations in the curvilinear coordinates system are derived to realize the P-and S-wave separation method.
文摘The governing equations as well as boundary land initial conditions for nonlinear dynamic response problems of viscous fluid-saturated biphase porous medium model, based on mixture theory, are presented. With Galerkin weighted residual method the corresponding nonlinear dynamic penalty finite element equation, in which the dependencies of volume fraction and permeation coefficients an deformation are included, is obtained. The iteration solution method of the nonlinear system equation is also discussed. As a numerical example, the dynamic response of a porous medium column under impulsive loading action is analyzed with the developed finite element program. The numerical results demonstrate the efficiency and correctness of the method.
基金the National Natural Science Foundation of China(No.40774056)Program of Excellent Team in Harbin Institute of Technology
文摘In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.
文摘A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function with three parameters, a mass conservation law and a concept of turbulent ellipses. A solution to the model was obtained by using a finite difference method and an extrapolation method. Formulas of calculating development index not only before but also after water breaks through an oil well in the condition of two-phase fluid nonlinear flow in the media were derived. An example was discussed. Water saturation distribution was presented. The moving law of drainage front was found. Laws of change of pressure difference with time were recognized. Results show that there is much difference of water saturation distribution between nonlinear flow and linear flow; that drainage front by water moves faster, water breaks through sooner and the index gets worse because of the nonlinear flow; and that dimensionless pressure difference gets larger at the same dimensionless time and difficulty of oil development becomes bigger by the nonlinear flow. Thus, it is necessary that influence of nonlinear flow on development indexes of the oil fields be taken into account. The results provide water-flooding development of the oilfields with scientific basis.
基金Project supported by the National Natural Science Foundation of China (Grant No 10302018), the Research Grants Council of the Government of the HKSAR, China (Grant No PolyU5172/020), and the Natural Science Foundation of Zhejiang Province, China (Grant No M103082).
文摘Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting on fluid particles is modified by axiding relative permeability in Nithiarasu's expression with an axiditional surface tension term. As a test of this model, we simulate the phase separation for the case of two immiscible fluids. The numerical results show that the two coupling relative permeability coefficients K12 and K21 have the same magnitude, so the linear flux-forcing relationships satisfy Onsager reciprocity. Phase separation phenomenon is shown with the time evolution of density distribution and bears a strong similarity to the results obtained from other numerical models and the flows in sands. At the same time, the dynamical rules in this model are local, therefore it can be run on massively parallel computers with well computational efficiency.
文摘A proper form of the Rayleigh number, containing the geometric mean of the vertical and horizontal permeabilities was obtained. The critical value for the onset of stable convection was found. The results proved analytically and numerically that anisotropy in permeability resists the initiation of hydrothermal convection. The equivalence between homogeneously anisotropic media and multiply fractured media was also investigated. It was confirmed that multiply fractured models are comparable to anisotropic models as long as they have the same averaged horizontal or vertical permeabilities and other physical parameters.
基金the National Natural Science Foundation of China (Nos.19872002 and 10272003)Climbing Foundation of Northern Jiaotong University
文摘The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method.
文摘Modeling reservoir permeability is one of the crucial tasks in reservoir simulation studies.Traditionally,it is done by kriging-based methods.More rigorous modeling of the permeability results in more reliable outputs of the reservoir models.Recently,a new category of geostatistical methods has been used for this purpose,namely multiple point statistics(MPS).By this new category of permeability modeling methods,one is able to predict the heterogeneity of the reservoir permeability as a continuous variable.These methods consider the direction of property variation in addition to the distances of known locations of the property.In this study,the reservoir performance of a modified version of the SPE 10 solution project as a pioneer case is used for investigating the efficiency of these methods and paralleling them with the kriging-based one.In this way,the permeability texture concept is introduced by applying some MPS methods.This study is accomplished in the conditions of real reservoir dimensions and velocities for the whole reservoir life.A continuous training image is used as the input of calculation for the permeability modeling.The results show that the detailed permeability of the reservoir as a continuous variable makes the reservoir simulation show the same fluid front movement and flooding behavior of the reservoir similar to the reference case with the same permeability heterogeneity.Some MPS methods enable the reservoir simulation to reproduce the fluid flow complexities such as bypassing and oil trapping during water flooding similar to the reference case.Accordingly,total oil production is predicted with higher accuracy and lower uncertainty.All studied cases are identical except for the permeability texture.Even histograms and variograms of permeabilities for the studied reservoir are quite similar,but the performance of the reservoir shows that kriging-based method results have slightly less accuracy than some MPS methods.Meanwhile,it results in lower uncertainty in outputs for this water flooding case performance.
文摘The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.
文摘In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the form of theorems. Two examples have been taken and streamline patterns are shown for the solutions.
文摘In vitro tissue culture of hard woody, endangered, medicinal plant Coscinium fenestratum is most challenging to plant tissue culturists. In the present study, petiole and leaf explants of Coscinium fenestratum were induced to form callus when cultured on vermicompost extract media along with coelomic fluid. Suspension medium was developed using vermicompost extract and coelomic fluid in 3:1 ratio. Phytochemical analysis of the alkaloid berberine was confirmed from callus, suspension cell culture and suspension medium by Thin Layer Chromatography and High Performance Liquid Chromatography. Vermicompost and its extracts with coelomic fluid have shown maximum (100 per cent) response of callus induction. Callus mass enlarged with increasing concentration of coelomic fluid and callus growth was assessed from the biomass. Incubation of culture tubes in dark supported callus development significantly. The Rf value of 0.36 confirmed the presence of berberine by Thin Layer Chromatography. Qualitative analysis confirmed the presence of alkaloid berberine with the retention time of 2.8 minutes similar to that of standard reference sample from Sigma chemicals, USA. The suspension medium turned deep yellow because of the release of the alkaloid. Vermicompost and its extracts along with coelomic fluid have shown the economical approach for micropropagation of economically and medicinally important plants.
文摘Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper.
基金supported by the National Natural Science Foundation of China(11102237)Program for Changjiang Scholars and Innovative Research Team in University(IRT1294)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20110133120012)China Scholarship Council(CSC)
文摘Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.
基金supported by Shanghai Leading Academic Disci-pline Project (B112 and T0302)Shanghai Science & Technology Development Foundation (09DZ1976600)Shanghai Rising-Star Program (10QA1406100)
文摘In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues, while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array, we set up a porous media model simulating the flow field with FLUENT software, studied the shear stress on interstitial cells' surface due to the interstitial fluid flow, and analyzed the effect of flow on protein space distribution around the ceils. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells, up to 30 Pa or so, which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries, blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion, numerical simulation provides an effective way for in vivo dynamic interstitial velocity research, helps to set up the vivid subtle interstitial flow environment of cells, and is beneficial to understanding the physiological functions of interstitial fluid flow.
基金Project(2015CB060200)supported by the National Basic Research Program of ChinaProject supported by the R-D Program of Gangxi Province of ChinaProject(201622ts093)supported by the Fundamental Research Funds for the Central Universities,China
文摘The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusion process. Based on fractal geometry and the constitutive equation of Herschel-Bulkley fluid, an analytical model for Herschel-Bulkley fluid flowing in a porous geo-material with fractal characteristics is derived. The proposed model provides a theoretical basis for grouting design and helps to understand the chemical fluid flow in soil in real environments. The results indicate that the predictions from the proposed model show good consistency with the literature data and application results. Grouting pressure decreases with increasing diffusion distance. Under the condition that the chemical fluid flows the same distance, the grouting pressure undergoes almost no change at first and then decreases nonlinearly with increasing tortuosity dimension. With increasing rheological index, the pressure difference first decreases linearly, then presents a trend of nonlinear decrease, and then decreases linearly again. The pressure difference gradually increases with increasing viscosity and yield stress of the chemical fluid. The decreasing trend of the grouting pressure difference is non-linear and rapid for porosity Φ>0.4, while there is a linear and slow decrease in pressure difference for high porosity.
基金supported by the National Natural Science Foundation of China(Grant No.51304079,Grant No.51474112,Grant No.41502343 and Grant No.51506073)
文摘Sediment-hosted hydrate reservoir often contains saturated pore fluid, which changes the heat transfer and mass transfer characteristics of the hydrate reservoir. The exploitation of hydrate under saturated pore fluid using depressurization is simulated experimentally to investigate the influence of particle size of porous media, dissociation temperature, pressure drop and injected fluid type on gas production behavior. Homogeneous methane hydrate was firstly formed in frozen quartz sand. With the formed hydrate sample, hydrate dissociation experiments by depressurization were conducted. The test results showed that the gas production rate of hydrate under saturated pore fluid was substantially influenced by the particle size, the pressure drop and the injected fluid type, while it was influenced little by the dissociation temperature. The hydrate dissociates faster under larger pressure drop and in the presence of smaller porous media within the experimental region. The dissociation rate increases with an increasing fluid salinity in the initial stage, while it decreases in the later stage. The increase of gas diffusion resistance resulted from ionic hydration atmosphere in saturated chloride solution impeded the dissociation of hydrate. It can be solved by increasing the pressure drop and decreasing the fluid salinity in the process of gas recovery from hydrate reservoir.
基金Supported by the National Natural Science Foundation of China under Grant No 10572052, and the Graduate Science and Technology Innovation Foundation of Huazhong University of Science and Technology under Grant No HF-05-15-2007-012.
文摘The fractai expressions for flow rate and hydraulic conductivity for power-law fluids in a single capillary are derived based on the fractai nature of tortuous capillaries. Every parameter in the proposed expressions has clear physical meaning. The flow rate and hydraulic conductivity for power-law fluids are found to be related to the tortuosity fractal dimension and the power-law index. The flow rate for power-law fluids increases with the increasing power-law index but decreases with the increasing tortuosity fractal dimension. Good agreement between the model predictions for flow in a fractai capillary and in a converging-diverging duct is obtained. The results suggest that the fractal capillary model can be used to model the power-law fluids with different rheologicai properties.