In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical ...In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.展开更多
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates...This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.展开更多
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans...Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.展开更多
The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of ...The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.展开更多
Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hier...Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.展开更多
Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance inte...Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance interdependence, which limits the segmentation performance. Transformer has been successfully applied to various computer vision, using self-attention mechanism to simulate long-distance interaction, so as to capture global information. However, self-attention lacks spatial location and high-performance computing. In order to solve the above problems, we develop a new medical transformer, which has a multi-scale context fusion function and can be used for medical image segmentation. The proposed model combines convolution operation and attention mechanism to form a u-shaped framework, which can capture both local and global information. First, the traditional converter module is improved to an advanced converter module, which uses post-layer normalization to obtain mild activation values, and uses scaled cosine attention with a moving window to obtain accurate spatial information. Secondly, we also introduce a deep supervision strategy to guide the model to fuse multi-scale feature information. It further enables the proposed model to effectively propagate feature information across layers, Thanks to this, it can achieve better segmentation performance while being more robust and efficient. The proposed model is evaluated on multiple medical image segmentation datasets. Experimental results demonstrate that the proposed model achieves better performance on a challenging dataset (ETIS) compared to existing methods that rely only on convolutional neural networks, transformers, or a combination of both. The mDice and mIou indicators increased by 2.74% and 3.3% respectively.展开更多
The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,compl...The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,complicating clinical decisions.The rising interest in diffusion models has led to their exploration of denoising images.We present Be-FOI(Better Fluoro Images),a weakly supervised model that uses cine images to denoise fluoroscopic images,both DR types.Trained through precise noise estimation and simulation,BeFOI employs Markov chains to denoise using only the fluoroscopic image as guidance.Our tests show that BeFOI outperforms other methods,reducing noise and enhancing clar-ity and diagnostic utility,making it an effective post-processing tool for medical images.展开更多
In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia...In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches.展开更多
The problems of installation and integration of complex suite of software for processing medical images. Based analysis of the situation is realized in an easier integration of an automated system using the latest inf...The problems of installation and integration of complex suite of software for processing medical images. Based analysis of the situation is realized in an easier integration of an automated system using the latest information technologies using the web - environment for analysis and segmentation of DICOM - images.展开更多
Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual informa...Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.展开更多
In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain an elegant spatial transformation of extracted feature points, many point set matching algorithms...Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain an elegant spatial transformation of extracted feature points, many point set matching algorithms(PMs) have been developed to match two point sets by optimizing multifarious distance functions. There are ample reviews related to medical image registration and PMs which summarize their basic principles and main algorithms separately. However,to data, detailed summary of PMs used in medical image registration in different clinical environments has not been published. In this paper, we provide a comprehensive review of the existing key techniques of the PMs applied to medical image registration according to the basic principles and clinical applications. As the core technique of the PMs, geometric transformation models are elaborated in this paper, demonstrating the mechanism of point set registration. We also focus on the clinical applications of the PMs and propose a practical classification method according to their applications in different clinical surgeries. The aim of this paper is to provide a summary of pointfeaturebased methods used in medical image registration and to guide doctors or researchers interested in this field to choose appropriate techniques in their research.展开更多
In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for med...In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.展开更多
Effective medical diagnosis is dramatically expensive,especially in third-world countries.One of the common diseases is pneumonia,and because of the remarkable similarity between its types and the limited number of me...Effective medical diagnosis is dramatically expensive,especially in third-world countries.One of the common diseases is pneumonia,and because of the remarkable similarity between its types and the limited number of medical images for recent diseases related to pneumonia,themedical diagnosis of these diseases is a significant challenge.Hence,transfer learning represents a promising solution in transferring knowledge from generic tasks to specific tasks.Unfortunately,experimentation and utilization of different models of transfer learning do not achieve satisfactory results.In this study,we suggest the implementation of an automatic detectionmodel,namelyCADTra,to efficiently diagnose pneumonia-related diseases.This model is based on classification,denoising autoencoder,and transfer learning.Firstly,pre-processing is employed to prepare the medical images.It depends on an autoencoder denoising(AD)algorithm with a modified loss function depending on a Gaussian distribution for decoder output to maximize the chances for recovering inputs and clearly demonstrate their features,in order to improve the diagnosis process.Then,classification is performed using a transfer learning model and a four-layer convolution neural network(FCNN)to detect pneumonia.The proposed model supports binary classification of chest computed tomography(CT)images and multi-class classification of chest X-ray images.Finally,a comparative study is introduced for the classification performance with and without the denoising process.The proposed model achieves precisions of 98%and 99%for binary classification and multi-class classification,respectively,with the different ratios for training and testing.To demonstrate the efficiency and superiority of the proposed CADTra model,it is compared with some recent state-of-the-art CNN models.The achieved outcomes prove that the suggested model can help radiologists to detect pneumonia-related diseases and improve the diagnostic efficiency compared to the existing diagnosis models.展开更多
Medical image segmentation is an important application field of computer vision in medical image processing.Due to the close location and high similarity of different organs in medical images,the current segmentation ...Medical image segmentation is an important application field of computer vision in medical image processing.Due to the close location and high similarity of different organs in medical images,the current segmentation algorithms have problems with mis-segmentation and poor edge segmentation.To address these challenges,we propose a medical image segmentation network(AF-Net)based on attention mechanism and feature fusion,which can effectively capture global information while focusing the network on the object area.In this approach,we add dual attention blocks(DA-block)to the backbone network,which comprises parallel channels and spatial attention branches,to adaptively calibrate and weigh features.Secondly,the multi-scale feature fusion block(MFF-block)is proposed to obtain feature maps of different receptive domains and get multi-scale information with less computational consumption.Finally,to restore the locations and shapes of organs,we adopt the global feature fusion blocks(GFF-block)to fuse high-level and low-level information,which can obtain accurate pixel positioning.We evaluate our method on multiple datasets(the aorta and lungs dataset),and the experimental results achieve 94.0%in mIoU and 96.3%in DICE,showing that our approach performs better than U-Net and other state-of-art methods.展开更多
As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so ...As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so on.Compared with natural images,medical images have a variety of modes.Besides,the emphasis of information which is conveyed by images of different modes is quite different.Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors.Therefore,large quantities of automated medical image segmentation methods have been developed.However,until now,researchers have not developed a universal method for all types of medical image segmentation.This paper reviews the literature on segmentation techniques that have produced major breakthroughs in recent years.Among the large quantities of medical image segmentation methods,this paper mainly discusses two categories of medical image segmentation methods.One is the improved strategies based on traditional clustering method.The other is the research progress of the improved image segmentation network structure model based on U-Net.The power of technology proves that the performance of the deep learning-based method is significantly better than that of the traditional method.This paper discussed both advantages and disadvantages of different algorithms and detailed how these methods can be used for the segmentation of lesions or other organs and tissues,as well as possible technical trends for future work.展开更多
The performance of medical image classification has been enhanced by deep convolutional neural networks(CNNs),which are typically trained with cross-entropy(CE)loss.However,when the label presents an intrinsic ordinal...The performance of medical image classification has been enhanced by deep convolutional neural networks(CNNs),which are typically trained with cross-entropy(CE)loss.However,when the label presents an intrinsic ordinal property in nature,e.g.,the development from benign to malignant tumor,CE loss cannot take into account such ordinal information to allow for better generalization.To improve model generalization with ordinal information,we propose a novel meta ordinal regression forest(MORF)method for medical image classification with ordinal labels,which learns the ordinal relationship through the combination of convolutional neural network and differential forest in a meta-learning framework.The merits of the proposed MORF come from the following two components:A tree-wise weighting net(TWW-Net)and a grouped feature selection(GFS)module.First,the TWW-Net assigns each tree in the forest with a specific weight that is mapped from the classification loss of the corresponding tree.Hence,all the trees possess varying weights,which is helpful for alleviating the tree-wise prediction variance.Second,the GFS module enables a dynamic forest rather than a fixed one that was previously used,allowing for random feature perturbation.During training,we alternatively optimize the parameters of the CNN backbone and TWW-Net in the meta-learning framework through calculating the Hessian matrix.Experimental results on two medical image classification datasets with ordinal labels,i.e.,LIDC-IDRI and Breast Ultrasound datasets,demonstrate the superior performances of our MORF method over existing state-of-the-art methods.展开更多
In this paper, the edge detection for a medical image is performed based on Sobel operator, and the bounding box is obtained, by which the effective medical sub-image is extracted. Then, the centroid and the normalize...In this paper, the edge detection for a medical image is performed based on Sobel operator, and the bounding box is obtained, by which the effective medical sub-image is extracted. Then, the centroid and the normalized central moments of the medical sub-image are calculated, and the rotation angle a is obtained by minimizing the second-order central moment based on its rotation invariance. Finally, the whole medical image is rotated around the centroid by --a to correct the tilted image. F^rthermore, inspired by the uniformity degree of the image, the rotation angle ct is revised, which achieves a better correction effect and performance. The experimental results show that the proposed algorithms are fairly reliable and accurate for the determination of tilt angles, and are practical and effective tilt correction techniques.展开更多
Patient medical information in all forms is crucial to keep private and secure,particularly when medical data communication occurs through insecure channels.Therefore,there is a bad need for protecting and securing th...Patient medical information in all forms is crucial to keep private and secure,particularly when medical data communication occurs through insecure channels.Therefore,there is a bad need for protecting and securing the color medical images against impostors and invaders.In this paper,an optical medical image security approach is introduced.It is based on the optical bit-plane Jigsaw Transform(JT)and Fractional Fourier Transform(FFT).Different kernels with a lone lens and a single arbitrary phase code are exploited in this security approach.A preceding bit-plane scrambling process is conducted on the input color medical images prior to the JT and FFT processes to accomplish a tremendous level of robustness and security.To confirm the efficiency of the suggested security approach for secure color medical image communication,various assessments on different color medical images are examined based on different statistical security metrics.Furthermore,a comparative analysis is introduced between the suggested security approach and other conventional cryptography protocols.The simulation outcomes acquired for performance assessment demonstrate that the suggested security approach is highly secure.It has excellent encryption/decryption performance and superior security results compared to conventional cryptography approaches with achieving recommended values of average entropy and correlation coefficient of 7.63 and 0.0103 for encrypted images.展开更多
Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases.Magnetic resonance imaging(MRI)is a widely utilized tool for the classification and de...Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases.Magnetic resonance imaging(MRI)is a widely utilized tool for the classification and detection of prostate cancer.Since the manual screening process of prostate cancer is difficult,automated diagnostic methods become essential.This study develops a novel Deep Learning based Prostate Cancer Classification(DTL-PSCC)model using MRI images.The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors.In addition,the fuzzy k-nearest neighbour(FKNN)model is utilized for classification process where the class labels are allotted to the input MRI images.Moreover,the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm(KHA)which results in improved classification performance.In order to demonstrate the good classification outcome of the DTL-PSCC technique,a wide range of simulations take place on benchmark MRI datasets.The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:62063004,62350410483Key Research and Development Project of Hainan Province,Grant/Award Number:ZDYF2021SHFZ093Zhejiang Provincial Postdoctoral Science Foundation,Grant/Award Number:ZJ2021028。
文摘In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.
文摘This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.
基金supported by the National Key R&D Program of China(2018AAA0102100)the National Natural Science Foundation of China(No.62376287)+3 种基金the International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province(2021CB1013)the Key Research and Development Program of Hunan Province(2022SK2054)the Natural Science Foundation of Hunan Province(No.2022JJ30762,2023JJ70016)the 111 Project under Grant(No.B18059).
文摘Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.
文摘The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.
基金Major Program of National Natural Science Foundation of China(NSFC12292980,NSFC12292984)National Key R&D Program of China(2023YFA1009000,2023YFA1009004,2020YFA0712203,2020YFA0712201)+2 种基金Major Program of National Natural Science Foundation of China(NSFC12031016)Beijing Natural Science Foundation(BNSFZ210003)Department of Science,Technology and Information of the Ministry of Education(8091B042240).
文摘Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.
文摘Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance interdependence, which limits the segmentation performance. Transformer has been successfully applied to various computer vision, using self-attention mechanism to simulate long-distance interaction, so as to capture global information. However, self-attention lacks spatial location and high-performance computing. In order to solve the above problems, we develop a new medical transformer, which has a multi-scale context fusion function and can be used for medical image segmentation. The proposed model combines convolution operation and attention mechanism to form a u-shaped framework, which can capture both local and global information. First, the traditional converter module is improved to an advanced converter module, which uses post-layer normalization to obtain mild activation values, and uses scaled cosine attention with a moving window to obtain accurate spatial information. Secondly, we also introduce a deep supervision strategy to guide the model to fuse multi-scale feature information. It further enables the proposed model to effectively propagate feature information across layers, Thanks to this, it can achieve better segmentation performance while being more robust and efficient. The proposed model is evaluated on multiple medical image segmentation datasets. Experimental results demonstrate that the proposed model achieves better performance on a challenging dataset (ETIS) compared to existing methods that rely only on convolutional neural networks, transformers, or a combination of both. The mDice and mIou indicators increased by 2.74% and 3.3% respectively.
文摘The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,complicating clinical decisions.The rising interest in diffusion models has led to their exploration of denoising images.We present Be-FOI(Better Fluoro Images),a weakly supervised model that uses cine images to denoise fluoroscopic images,both DR types.Trained through precise noise estimation and simulation,BeFOI employs Markov chains to denoise using only the fluoroscopic image as guidance.Our tests show that BeFOI outperforms other methods,reducing noise and enhancing clar-ity and diagnostic utility,making it an effective post-processing tool for medical images.
基金funded by Researchers Supporting Program at King Saud University,(RSPD2024R809).
文摘In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches.
文摘The problems of installation and integration of complex suite of software for processing medical images. Based analysis of the situation is realized in an easier integration of an automated system using the latest information technologies using the web - environment for analysis and segmentation of DICOM - images.
文摘Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
基金Supported by the National Natural Science Foundation of China(Grant No.61533016)
文摘Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain an elegant spatial transformation of extracted feature points, many point set matching algorithms(PMs) have been developed to match two point sets by optimizing multifarious distance functions. There are ample reviews related to medical image registration and PMs which summarize their basic principles and main algorithms separately. However,to data, detailed summary of PMs used in medical image registration in different clinical environments has not been published. In this paper, we provide a comprehensive review of the existing key techniques of the PMs applied to medical image registration according to the basic principles and clinical applications. As the core technique of the PMs, geometric transformation models are elaborated in this paper, demonstrating the mechanism of point set registration. We also focus on the clinical applications of the PMs and propose a practical classification method according to their applications in different clinical surgeries. The aim of this paper is to provide a summary of pointfeaturebased methods used in medical image registration and to guide doctors or researchers interested in this field to choose appropriate techniques in their research.
基金supported by the Key Research Project of Hainan Province[ZDYF2018129]the Higher Education Research Project of Hainan Province(Hnky2019-73)+3 种基金the National Natural Science Foundation of China[61762033]the Natural Science Foundation of Hainan[617175]the Special Scientific Research Project of Philosophy and Social Sciences of Chongqing Medical University[201703]the Key Research Project of Haikou College of Economics[HJKZ18-01].
文摘In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.
基金This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.
文摘Effective medical diagnosis is dramatically expensive,especially in third-world countries.One of the common diseases is pneumonia,and because of the remarkable similarity between its types and the limited number of medical images for recent diseases related to pneumonia,themedical diagnosis of these diseases is a significant challenge.Hence,transfer learning represents a promising solution in transferring knowledge from generic tasks to specific tasks.Unfortunately,experimentation and utilization of different models of transfer learning do not achieve satisfactory results.In this study,we suggest the implementation of an automatic detectionmodel,namelyCADTra,to efficiently diagnose pneumonia-related diseases.This model is based on classification,denoising autoencoder,and transfer learning.Firstly,pre-processing is employed to prepare the medical images.It depends on an autoencoder denoising(AD)algorithm with a modified loss function depending on a Gaussian distribution for decoder output to maximize the chances for recovering inputs and clearly demonstrate their features,in order to improve the diagnosis process.Then,classification is performed using a transfer learning model and a four-layer convolution neural network(FCNN)to detect pneumonia.The proposed model supports binary classification of chest computed tomography(CT)images and multi-class classification of chest X-ray images.Finally,a comparative study is introduced for the classification performance with and without the denoising process.The proposed model achieves precisions of 98%and 99%for binary classification and multi-class classification,respectively,with the different ratios for training and testing.To demonstrate the efficiency and superiority of the proposed CADTra model,it is compared with some recent state-of-the-art CNN models.The achieved outcomes prove that the suggested model can help radiologists to detect pneumonia-related diseases and improve the diagnostic efficiency compared to the existing diagnosis models.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,http://kxjsc.gov.hnedu.cn/+5 种基金in part by the Science Research Projects of Hunan Provincial Education Department under Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4140),author Y.T,http://kjt.hunan.gov.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2019SK2022,author Y.T,http://kjt.hunan.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant CX20200730,author G.H,http://kjt.hunan.gov.cn/in part by the Graduate Science and Technology Innovation Fund Project of Central South University of Forestry and Technology under Grant CX20202038,author G.H,http://jwc.csuft.edu.cn/.
文摘Medical image segmentation is an important application field of computer vision in medical image processing.Due to the close location and high similarity of different organs in medical images,the current segmentation algorithms have problems with mis-segmentation and poor edge segmentation.To address these challenges,we propose a medical image segmentation network(AF-Net)based on attention mechanism and feature fusion,which can effectively capture global information while focusing the network on the object area.In this approach,we add dual attention blocks(DA-block)to the backbone network,which comprises parallel channels and spatial attention branches,to adaptively calibrate and weigh features.Secondly,the multi-scale feature fusion block(MFF-block)is proposed to obtain feature maps of different receptive domains and get multi-scale information with less computational consumption.Finally,to restore the locations and shapes of organs,we adopt the global feature fusion blocks(GFF-block)to fuse high-level and low-level information,which can obtain accurate pixel positioning.We evaluate our method on multiple datasets(the aorta and lungs dataset),and the experimental results achieve 94.0%in mIoU and 96.3%in DICE,showing that our approach performs better than U-Net and other state-of-art methods.
基金supported partly by the Open Project of State Key Laboratory of Millimeter Wave under Grant K202218partly by Innovation and Entrepreneurship Training Program of College Students under Grants 202210700006Y and 202210700005Z.
文摘As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so on.Compared with natural images,medical images have a variety of modes.Besides,the emphasis of information which is conveyed by images of different modes is quite different.Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors.Therefore,large quantities of automated medical image segmentation methods have been developed.However,until now,researchers have not developed a universal method for all types of medical image segmentation.This paper reviews the literature on segmentation techniques that have produced major breakthroughs in recent years.Among the large quantities of medical image segmentation methods,this paper mainly discusses two categories of medical image segmentation methods.One is the improved strategies based on traditional clustering method.The other is the research progress of the improved image segmentation network structure model based on U-Net.The power of technology proves that the performance of the deep learning-based method is significantly better than that of the traditional method.This paper discussed both advantages and disadvantages of different algorithms and detailed how these methods can be used for the segmentation of lesions or other organs and tissues,as well as possible technical trends for future work.
基金This work was supported in part by the Natural Science Foundation of Shanghai(21ZR1403600)the National Natural Science Foundation of China(62176059)+3 种基金Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)Zhang Jiang Laboratory,Shanghai Sailing Program(21YF1402800)Shanghai Municipal of Science and Technology Project(20JC1419500)Shanghai Center for Brain Science and Brain-inspired Technology.
文摘The performance of medical image classification has been enhanced by deep convolutional neural networks(CNNs),which are typically trained with cross-entropy(CE)loss.However,when the label presents an intrinsic ordinal property in nature,e.g.,the development from benign to malignant tumor,CE loss cannot take into account such ordinal information to allow for better generalization.To improve model generalization with ordinal information,we propose a novel meta ordinal regression forest(MORF)method for medical image classification with ordinal labels,which learns the ordinal relationship through the combination of convolutional neural network and differential forest in a meta-learning framework.The merits of the proposed MORF come from the following two components:A tree-wise weighting net(TWW-Net)and a grouped feature selection(GFS)module.First,the TWW-Net assigns each tree in the forest with a specific weight that is mapped from the classification loss of the corresponding tree.Hence,all the trees possess varying weights,which is helpful for alleviating the tree-wise prediction variance.Second,the GFS module enables a dynamic forest rather than a fixed one that was previously used,allowing for random feature perturbation.During training,we alternatively optimize the parameters of the CNN backbone and TWW-Net in the meta-learning framework through calculating the Hessian matrix.Experimental results on two medical image classification datasets with ordinal labels,i.e.,LIDC-IDRI and Breast Ultrasound datasets,demonstrate the superior performances of our MORF method over existing state-of-the-art methods.
基金supported by Foundation of 11th Five-year Plan for Key Construction Academic Subject (Optics) of Hunan Province,PRCScientific Research Fund of Hunan Provincial Education Department, PRC (No. 06C581)
文摘In this paper, the edge detection for a medical image is performed based on Sobel operator, and the bounding box is obtained, by which the effective medical sub-image is extracted. Then, the centroid and the normalized central moments of the medical sub-image are calculated, and the rotation angle a is obtained by minimizing the second-order central moment based on its rotation invariance. Finally, the whole medical image is rotated around the centroid by --a to correct the tilted image. F^rthermore, inspired by the uniformity degree of the image, the rotation angle ct is revised, which achieves a better correction effect and performance. The experimental results show that the proposed algorithms are fairly reliable and accurate for the determination of tilt angles, and are practical and effective tilt correction techniques.
基金This research was funded by the Deanship of Scientific Research at King Saud University through research group No.(RG-1441-456)(Grantee:MA,https://dsrs.ksu.edu.sa/).
文摘Patient medical information in all forms is crucial to keep private and secure,particularly when medical data communication occurs through insecure channels.Therefore,there is a bad need for protecting and securing the color medical images against impostors and invaders.In this paper,an optical medical image security approach is introduced.It is based on the optical bit-plane Jigsaw Transform(JT)and Fractional Fourier Transform(FFT).Different kernels with a lone lens and a single arbitrary phase code are exploited in this security approach.A preceding bit-plane scrambling process is conducted on the input color medical images prior to the JT and FFT processes to accomplish a tremendous level of robustness and security.To confirm the efficiency of the suggested security approach for secure color medical image communication,various assessments on different color medical images are examined based on different statistical security metrics.Furthermore,a comparative analysis is introduced between the suggested security approach and other conventional cryptography protocols.The simulation outcomes acquired for performance assessment demonstrate that the suggested security approach is highly secure.It has excellent encryption/decryption performance and superior security results compared to conventional cryptography approaches with achieving recommended values of average entropy and correlation coefficient of 7.63 and 0.0103 for encrypted images.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/25/43)Taif University Researchers Supporting Project Number(TURSP-2020/346),Taif University,Taif,Saudi Arabia.
文摘Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases.Magnetic resonance imaging(MRI)is a widely utilized tool for the classification and detection of prostate cancer.Since the manual screening process of prostate cancer is difficult,automated diagnostic methods become essential.This study develops a novel Deep Learning based Prostate Cancer Classification(DTL-PSCC)model using MRI images.The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors.In addition,the fuzzy k-nearest neighbour(FKNN)model is utilized for classification process where the class labels are allotted to the input MRI images.Moreover,the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm(KHA)which results in improved classification performance.In order to demonstrate the good classification outcome of the DTL-PSCC technique,a wide range of simulations take place on benchmark MRI datasets.The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.