期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Energy Aware Clustering with Medical Data Classification Model in IoT Environment
1
作者 R.Bharathi T.Abirami 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期797-811,共15页
With the exponential developments of wireless networking and inexpensive Internet of Things(IoT),a wide range of applications has been designed to attain enhanced services.Due to the limited energy capacity of IoT dev... With the exponential developments of wireless networking and inexpensive Internet of Things(IoT),a wide range of applications has been designed to attain enhanced services.Due to the limited energy capacity of IoT devices,energy-aware clustering techniques can be highly preferable.At the same time,artificial intelligence(AI)techniques can be applied to perform appropriate disease diagnostic processes.With this motivation,this study designs a novel squirrel search algorithm-based energy-aware clustering with a medical data classification(SSAC-MDC)model in an IoT environment.The goal of the SSAC-MDC technique is to attain maximum energy efficiency and disease diagnosis in the IoT environment.The proposed SSAC-MDC technique involves the design of the squirrel search algorithm-based clustering(SSAC)technique to choose the proper set of cluster heads(CHs)and construct clusters.Besides,the medical data classification process involves three different subprocesses namely pre-processing,autoencoder(AE)based classification,and improved beetle antenna search(IBAS)based parameter tuning.The design of the SSAC technique and IBAS based parameter optimization processes show the novelty of the work.For show-casing the improved performance of the SSAC-MDC technique,a series of experiments were performed and the comparative results highlighted the supremacy of the SSAC-MDC technique over the recent methods. 展开更多
关键词 Internet of things healthcare medical data classification energy efficiency CLUSTERING autoencoder
下载PDF
An Improved Steganographic Scheme Using the Contour Principle to Ensure the Privacy of Medical Data on Digital Images
2
作者 R.Bala Krishnan D.Yuvaraj +4 位作者 P.Suthanthira Devi Varghese S.Chooralil N.Rajesh Kumar B.Karthikeyan G.Manikandan 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1563-1576,共14页
With the improvement of current online communication schemes,it is now possible to successfully distribute and transport secured digital Content via the communication channel at a faster transmission rate.Traditional ... With the improvement of current online communication schemes,it is now possible to successfully distribute and transport secured digital Content via the communication channel at a faster transmission rate.Traditional steganography and cryptography concepts are used to achieve the goal of concealing secret Content on a media and encrypting it before transmission.Both of the techniques mentioned above aid in the confidentiality of feature content.The proposed approach concerns secret content embodiment in selected pixels on digital image layers such as Red,Green,and Blue.The private Content originated from a medical client and was forwarded to a medical practitioner on the server end through the internet.The K-Means clustering principle uses the contouring approach to frame the pixel clusters on the image layers.The content embodiment procedure is performed on the selected pixel groups of all layers of the image using the Least Significant Bit(LSB)substitution technique to build the secret Content embedded image known as the stego image,which is subsequently transmitted across the internet medium to the server end.The experimental results are computed using the inputs from“Open-Access Medical Image Repositories(aylward.org)”and demonstrate the scheme’s impudence as the Content concealing procedure progresses. 展开更多
关键词 CONTOURING secret content embodiment least significant bit embedding medical data preservation secret content congregation pixel clustering
下载PDF
Ensemble Deep Learning with Chimp Optimization Based Medical Data Classification
3
作者 Ashit Kumar Dutta Yasser Albagory +2 位作者 Majed Alsanea Hamdan I.Almohammed Abdul Rahaman Wahab Sait 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1643-1655,共13页
Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transformi... Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%. 展开更多
关键词 EEG eye state data classification deep learning medical data analysis chimp optimization algorithm
下载PDF
IWD-Miner: A Novel Metaheuristic Algorithm for Medical Data Classification
4
作者 Sarab AlMuhaideb Reem BinGhannam +3 位作者 Nourah Alhelal Shatha Alduheshi Fatimah Alkhamees Raghad Alsuhaibani 《Computers, Materials & Continua》 SCIE EI 2021年第2期1329-1346,共18页
Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to ... Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to predict the associated diagnosis or prognosis.To gain experts’trust,the prediction and the reasoning behind it are equally important.Accordingly,we confine our research to learn rule-based models because they are transparent and comprehensible.One approach to MDC involves the use of metaheuristic(MH)algorithms.Here we report on the development and testing of a novel MH algorithm:IWD-Miner.This algorithm can be viewed as a fusion of Intelligent Water Drops(IWDs)and AntMiner+.It was subjected to a four-stage sensitivity analysis to optimize its performance.For this purpose,21 publicly available medical datasets were used from the Machine Learning Repository at the University of California Irvine.Interestingly,there were only limited differences in performance between IWDMiner variants which is suggestive of its robustness.Finally,using the same 21 datasets,we compared the performance of the optimized IWD-Miner against two extant algorithms,AntMiner+and J48.The experiments showed that both rival algorithms are considered comparable in the effectiveness to IWD-Miner,as confirmed by the Wilcoxon nonparametric statistical test.Results suggest that IWD-Miner is more efficient than AntMiner+as measured by the average number of fitness evaluations to a solution(1,386,621.30 vs.2,827,283.88 fitness evaluations,respectively).J48 exhibited higher accuracy on average than IWD-Miner(79.58 vs.73.65,respectively)but produced larger models(32.82 leaves vs.8.38 terms,respectively). 展开更多
关键词 Ant colony optimization AntMiner+ IWDs IWD-Miner J48 medical data classification metaheuristic algorithms swarm intelligence
下载PDF
Feature Subset Selection with Artificial Intelligence-Based Classification Model for Biomedical Data
5
作者 Jaber S.Alzahrani Reem M.Alshehri +3 位作者 Mohammad Alamgeer Anwer Mustafa Hilal Abdelwahed Motwakel Ishfaq Yaseen 《Computers, Materials & Continua》 SCIE EI 2022年第9期4267-4281,共15页
Recently,medical data classification becomes a hot research topic among healthcare professionals and research communities,which assist in the disease diagnosis and decision making process.The latest developments of ar... Recently,medical data classification becomes a hot research topic among healthcare professionals and research communities,which assist in the disease diagnosis and decision making process.The latest developments of artificial intelligence(AI)approaches paves a way for the design of effective medical data classification models.At the same time,the existence of numerous features in the medical dataset poses a curse of dimensionality problem.For resolving the issues,this article introduces a novel feature subset selection with artificial intelligence based classification model for biomedical data(FSS-AICBD)technique.The FSS-AICBD technique intends to derive a useful set of features and thereby improve the classifier results.Primarily,the FSS-AICBD technique undergoes min-max normalization technique to prevent data complexity.In addition,the information gain(IG)approach is applied for the optimal selection of feature subsets.Also,group search optimizer(GSO)with deep belief network(DBN)model is utilized for biomedical data classification where the hyperparameters of the DBN model can be optimally tuned by the GSO algorithm.The choice of IG and GSO approaches results in promising medical data classification results.The experimental result analysis of the FSS-AICBD technique takes place using different benchmark healthcare datasets.The simulation results reported the enhanced outcomes of the FSS-AICBD technique interms of several measures. 展开更多
关键词 medical data classification feature selection deep learning healthcare sector artificial intelligence
下载PDF
Fuzzy Logic with Archimedes Optimization Based Biomedical Data Classification Model
6
作者 Mahmoud Ragab Diaa Hamed 《Computers, Materials & Continua》 SCIE EI 2022年第8期4185-4200,共16页
Medical data classification becomes a hot research topic in the healthcare sector to aid physicians in the healthcare sector for decision making.Besides,the advances of machine learning(ML)techniques assist to perform... Medical data classification becomes a hot research topic in the healthcare sector to aid physicians in the healthcare sector for decision making.Besides,the advances of machine learning(ML)techniques assist to perform the effective classification task.With this motivation,this paper presents a Fuzzy Clustering Approach Based on Breadth-first Search Algorithm(FCA-BFS)with optimal support vector machine(OSVM)model,named FCABFS-OSVM for medical data classification.The proposed FCABFS-OSVM technique intends to classify the healthcare data by the use of clustering and classification models.Besides,the proposed FCABFSOSVM technique involves the design of FCABFS technique to cluster the medical data which helps to boost the classification performance.Moreover,the OSVM model investigates the clustered medical data to perform classification process.Furthermore,Archimedes optimization algorithm(AOA)is utilized to the SVM parameters and boost the medical data classification results.A wide range of simulations takes place to highlight the promising performance of the FCABFS-OSVM technique.Extensive comparison studies reported the enhanced outcomes of the FCABFS-OSVM technique over the recent state of art approaches. 展开更多
关键词 CLUSTERING medical data classification machine learning parameter tuning support vector machines
下载PDF
Mathematical Modelling of Quantum Kernel Method for Biomedical Data Analysis
7
作者 Mahmoud Ragab Ehab Bahauden Ashary +2 位作者 Maha Farouk S.Sabir Adel A.Bahaddad Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2022年第6期5441-5457,共17页
This study presents a novelmethod to detect themedical application based on Quantum Computing(QC)and a few Machine Learning(ML)systems.QC has a primary advantage i.e.,it uses the impact of quantum parallelism to provi... This study presents a novelmethod to detect themedical application based on Quantum Computing(QC)and a few Machine Learning(ML)systems.QC has a primary advantage i.e.,it uses the impact of quantum parallelism to provide the consequences of prime factorization issue in a matter of seconds.So,this model is suggested for medical application only by recent researchers.A novel strategy i.e.,Quantum KernelMethod(QKM)is proposed in this paper for data prediction.In this QKM process,Linear Tunicate Swarm Algorithm(LTSA),the optimization technique is used to calculate the loss function initially and is aimed at medical data.The output of optimization is either 0 or 1 i.e.,odd or even in QC.From this output value,the data is identified according to the class.Meanwhile,the method also reduces time,saves cost and improves the efficiency by feature selection process i.e.,Filter method.After the features are extracted,QKM is deployed as a classification model,while the loss function is minimized by LTSA.The motivation of the minimal objective is to remain faster.However,some computations can be performed more efficiently by the proposed model.In testing,the test data was evaluated by minimal loss function.The outcomes were assessed in terms of accuracy,computational time,and so on.For this,databases like Lymphography,Dermatology,and Arrhythmia were used. 展开更多
关键词 medical data classification feature selection qkm classifier ltsa optimization
下载PDF
Secure Model of Medical Data Sharing for Complex Scenarios
8
作者 Wei She Yue Hu +3 位作者 Zhao Tian Guoning Liu Bo Wang Wei Liu 《Journal of Cyber Security》 2019年第1期11-17,共7页
In order to secure the massive heterogeneous medical data for the complex scenarios and improve the information sharing efficiency in healthcare system,a distributed medical data ledger model(DMDL)is proposed in this ... In order to secure the massive heterogeneous medical data for the complex scenarios and improve the information sharing efficiency in healthcare system,a distributed medical data ledger model(DMDL)is proposed in this paper.This DMDL model has adopted the blockchain technology including the function decoupling,the distributed consensus,smart contract as well as multi-channel communication structure of consortium blockchain.The DMDL model not only has high adaptability,but also meets the requirements of the medical treatment processes which generally involve multientities,highly private information and secure transaction.The steps for processing the medical data are also introduced.Additionally,the methods for the definition and application of the DMDL model are presented for three specific medical scenarios,i.e.,the management of the heterogeneous data,copyright protection for medical data and the secure utilization of sensitive data.The advantage of the proposed DMDL model is demonstrated by comparing with the models which are being currently adopted in healthcare system. 展开更多
关键词 medical data sharing model consortium blockchain communication channel structure DMDL
下载PDF
IHVFL: a privacy-enhanced intention-hiding vertical federated learning framework for medical data
9
作者 Fei Tang Shikai Liang +1 位作者 Guowei Ling Jinyong Shan 《Cybersecurity》 EI CSCD 2024年第2期96-112,共17页
Vertical Federated Learning(VFL)has many applications in the field of smart healthcare with excellent performance.However,current VFL systems usually primarily focus on the privacy protection during model training,whi... Vertical Federated Learning(VFL)has many applications in the field of smart healthcare with excellent performance.However,current VFL systems usually primarily focus on the privacy protection during model training,while the preparation of training data receives little attention.In real-world applications,like smart healthcare,the process of the training data preparation may involve some participant's intention which could be privacy information for this partici-pant.To protect the privacy of the model training intention,we describe the idea of Intention-Hiding Vertical Feder-ated Learning(IHVFL)and illustrate a framework to achieve this privacy-preserving goal.First,we construct two secure screening protocols to enhance the privacy protection in feature engineering.Second,we implement the work of sample alignment bases on a novel private set intersection protocol.Finally,we use the logistic regression algorithm to demonstrate the process of IHVFL.Experiments show that our model can perform better efficiency(less than 5min)and accuracy(97%)on Breast Cancer medical dataset while maintaining the intention-hiding goal. 展开更多
关键词 medical data Vertical federated learning Privacy-presserving Intention-hiding Logistic regression
原文传递
Reliable Data Collection Model and Transmission Framework in Large-Scale Wireless Medical Sensor Networks
10
作者 Haosong Gou Gaoyi Zhang +2 位作者 RenêRipardo Calixto Senthil Kumar Jagatheesaperumal Victor Hugo C.de Albuquerque 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1077-1102,共26页
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ... Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs. 展开更多
关键词 Wireless sensor networks reliable data transmission medical emergencies CLUSTER data collection routing scheme
下载PDF
Pre-training in Medical Data:A Survey
11
作者 Yixuan Qiu Feng Lin +1 位作者 Weitong Chen Miao Xu 《Machine Intelligence Research》 EI CSCD 2023年第2期147-179,共33页
Medical data refers to health-related information associated with regular patient care or as part of a clinical trial program.There are many categories of such data,such as clinical imaging data,bio-signal data,electr... Medical data refers to health-related information associated with regular patient care or as part of a clinical trial program.There are many categories of such data,such as clinical imaging data,bio-signal data,electronic health records(EHR),and multi-modality medical data.With the development of deep neural networks in the last decade,the emerging pre-training paradigm has become dominant in that it has significantly improved machine learning methods′performance in a data-limited scenario.In recent years,studies of pre-training in the medical domain have achieved significant progress.To summarize these technology advancements,this work provides a comprehensive survey of recent advances for pre-training on several major types of medical data.In this survey,we summarize a large number of related publications and the existing benchmarking in the medical domain.Especially,the survey briefly describes how some pre-training methods are applied to or developed for medical data.From a data-driven perspective,we examine the extensive use of pre-training in many medical scenarios.Moreover,based on the summary of recent pre-training studies,we identify several challenges in this field to provide insights for future studies. 展开更多
关键词 medical data pre-training transfer learning self-supervised learning medical image data electrocardiograms(ECG)data
原文传递
Research on medical data storage and sharing model based on blockchain
12
作者 Jian Zhao Wenqian Qiang +4 位作者 Zisong Zhao Tianbo An Zhejun Kuang Dawei Xu Lijuan Shi 《High-Confidence Computing》 2023年第3期61-67,共7页
With the process of medical informatization,medical diagnosis results are recorded and shared in the form of electronic data in the computer.However,the security of medical data storage cannot be effectively protected... With the process of medical informatization,medical diagnosis results are recorded and shared in the form of electronic data in the computer.However,the security of medical data storage cannot be effectively protected and the unsafe sharing of medical data among different institutions is still a hidden danger that cannot be underestimated.To solve the above problems,a secure storage and sharing model of private data based on blockchain technology and homomorphic encryption is constructed.Based on the idea of blockchain decentralization,the model maintains a reliable medical alliance chain system to ensure the safe transmission of data between different institutions;A privacy data encryption and computing protocol based on homomorphic encryption is constructed to ensure the safe transmission of medical data;Using its complete anonymity to ensure the Blockchain of medical data and patient identity privacy;A strict transaction control management mechanism of medical data based on Intelligent contract automatic execution of preset instructions is proposed.After security verification,compared with the traditional medical big data storage and sharing mode,the model has better security and sharing. 展开更多
关键词 Blockchain Encryption algorithm medical data Secure message processing systems storage MODELS Shared-resource systems
原文传递
Research on a Fog Computing Architecture and BP Algorithm Application for Medical Big Data
13
作者 Baoling Qin 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期255-267,共13页
Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficie... Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficiency of medical diagnosis.And with the wide application of the Internet of Things and Big Data in the medical field,medical Big Data is increasing in geometric magnitude resulting in cloud service overload,insufficient storage,communication delay,and network congestion.In order to solve these medical and network problems,a medical big-data-oriented fog computing architec-ture and BP algorithm application are proposed,and its structural advantages and characteristics are studied.This architecture enables the medical Big Data generated by medical edge devices and the existing data in the cloud service center to calculate,compare and analyze the fog node through the Internet of Things.The diagnosis results are designed to reduce the business processing delay and improve the diagnosis effect.Considering the weak computing of each edge device,the artificial intelligence BP neural network algorithm is used in the core computing model of the medical diagnosis system to improve the system computing power,enhance the medical intelligence-aided decision-making,and improve the clinical diagnosis and treatment efficiency.In the application process,combined with the characteristics of medical Big Data technology,through fog architecture design and Big Data technology integration,we could research the processing and analysis of heterogeneous data of the medical diagnosis system in the context of the Internet of Things.The results are promising:The medical platform network is smooth,the data storage space is sufficient,the data processing and analysis speed is fast,the diagnosis effect is remarkable,and it is a good assistant to doctors’treatment effect.It not only effectively solves the problem of low clinical diagnosis,treatment efficiency and quality,but also reduces the waiting time of patients,effectively solves the contradiction between doctors and patients,and improves the medical service quality and management level. 展开更多
关键词 medical big data IOT fog computing distributed computing BP algorithm model
下载PDF
Improvement of Association Rule Algorithm Based on Hadoop for Medical Data
14
作者 Guangqian Kong Huan Tian +1 位作者 Yun Wu Qiang Wei 《国际计算机前沿大会会议论文集》 2020年第2期506-520,共15页
Data mining technology and association rule mining can be important technologies to deal with a large amount of accumulated data in the medical field,and can reflect the value of large medical data.According to the ch... Data mining technology and association rule mining can be important technologies to deal with a large amount of accumulated data in the medical field,and can reflect the value of large medical data.According to the characteristics of large medical data,aiming at the problem that the traditional Apriori algorithm scans the database too long and generates too many candidate itemsets,a method of digital mapping and sorting of itemsets is proposed.The method of the base model and generation model was used to generate superset,which can improve the efficiency of superset generation and pruning.By using open source framework Hadoop and transplanting the improved algorithm to the Hadoop platform combined with the MapReduce framework,the idea of parallel improvement was introduced based on database partition.Experimental results show that it solves the redundancy of large-scale data sets and makes Apriori algorithm have good parallel scalability.Finally,an example was given to demonstrate the possibility of improving the algorithm. 展开更多
关键词 medical data HADOOP APRIORI MAPREDUCE
原文传递
Multi Attribute Case Based Privacy-preserving for Healthcare Transactional Data Using Cryptography
15
作者 K.Saranya K.Premalatha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2029-2042,共14页
Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge ... Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting. 展开更多
关键词 PRIVACY-PRESERVING crypto policy medical data mining integrity and verification personalized records CRYPTOGRAPHY
下载PDF
Intelligent Electrocardiogram Analysis in Medicine:Data,Methods,and Applications
16
作者 Yu-Xia Guan Ying An +2 位作者 Feng-Yi Guo Wei-Bai Pan Jian-Xin Wang 《Chinese Medical Sciences Journal》 CAS CSCD 2023年第1期38-48,共11页
Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been wi... Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been widely used in various biomedical applications such as arrhythmia detection,disease-specific detection,mortality prediction,and biometric recognition.In recent years,ECG-related studies have been carried out using a variety of publicly available datasets,with many differences in the datasets used,data preprocessing methods,targeted challenges,and modeling and analysis techniques.Here we systematically summarize and analyze the ECGbased automatic analysis methods and applications.Specifically,we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes.Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications.Finally,we elucidated some of the challenges in ECG analysis and provided suggestions for further research. 展开更多
关键词 ELECTROCARDIOGRAM dataBASE PREPROCESSING machine learning medical big data analysis
下载PDF
Identification of Early Warning Signals of Infectious Diseases in Hospitals by Integrating Clinical Treatment and Disease Prevention
17
作者 Lei ZHANG Min-ye LI +2 位作者 Chen ZHI Min ZHU Hui MA 《Current Medical Science》 SCIE CAS 2024年第2期273-280,共8页
The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accur... The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control. 展开更多
关键词 infectious disease disease prevention and control medical data warning signals
下载PDF
E-Healthcare Supported by Big Data
18
作者 Jianqi Liu Jiafu Wan +1 位作者 Shenghua He Yanlin Zhang 《ZTE Communications》 2014年第3期46-52,共7页
The era of open information in healthcare has arrived. E-healthcare supported by big data supports the move toward greater trans-parency in healthcare by making decades of stored health data searchable and usable. Thi... The era of open information in healthcare has arrived. E-healthcare supported by big data supports the move toward greater trans-parency in healthcare by making decades of stored health data searchable and usable. This paper gives an overview the e-health-care architecture. We discuss the four layers of the architecture-data collection, data transport, data storage, and data analysis-as well as the challenges of data security, data privacy, real-time delivery, and open standard interface. We discuss the necessity of establishing an impeccably secure access mechanism and of enacting strong laws to protect patient privacy. 展开更多
关键词 healthcare wireless body network big data disease prediction remote monitoring medical data
下载PDF
Data Anonymous Authentication for BIoMT with Proxy Group Signature
19
作者 Chaoyang Li Yalan Wang +3 位作者 Gang Xu Xiubo Chen Xiangjun Xin Jian Li 《Journal of Cyber Security》 2021年第4期207-216,共10页
Along with the increase of wearable medical device,the privacy leakage problem in the process of transmission between these edge medical devices.The blockchain-enabled Internet of Medical Things(BIoMT)has been develop... Along with the increase of wearable medical device,the privacy leakage problem in the process of transmission between these edge medical devices.The blockchain-enabled Internet of Medical Things(BIoMT)has been developed to reform traditional centralized medical system in recent years.This paper first introduces a data anonymous authentication model to protect user privacy and medical data in BIoMT.Then,a proxy group signature(PGS)scheme has been proposed based on lattice assumption.This scheme can well satisfy the anonymous authentication demand for the proposed model,and provide anti-quantum attack security for BIoMT in the future general quantum computer age.Moreover,the security analysis shows this PGS scheme is secure against the dynamical-almost-full anonymous and traceability.The efficiency comparison shows the proposed model and PGS scheme is more efficient and practical. 展开更多
关键词 Blockchain-enabled Internet of medical Things anonymous authentication proxy group signature medical data
下载PDF
A Novel Wrapper-Based Optimization Algorithm for the Feature Selection and Classification 被引量:1
20
作者 Noureen Talpur Said Jadid Abdulkadir +2 位作者 Mohd Hilmi Hasan Hitham Alhussian Ayed Alwadain 《Computers, Materials & Continua》 SCIE EI 2023年第3期5799-5820,共22页
Machine learning(ML)practices such as classification have played a very important role in classifying diseases in medical science.Since medical science is a sensitive field,the pre-processing of medical data requires ... Machine learning(ML)practices such as classification have played a very important role in classifying diseases in medical science.Since medical science is a sensitive field,the pre-processing of medical data requires careful handling to make quality clinical decisions.Generally,medical data is considered high-dimensional and complex data that contains many irrelevant and redundant features.These factors indirectly upset the disease prediction and classification accuracy of any ML model.To address this issue,various data pre-processing methods called Feature Selection(FS)techniques have been presented in the literature.However,the majority of such techniques frequently suffer from local minima issues due to large solution space.Thus,this study has proposed a novel wrapper-based Sand Cat SwarmOptimization(SCSO)technique as an FS approach to find optimum features from ten benchmark medical datasets.The SCSO algorithm replicates the hunting and searching strategies of the sand cat while having the advantage of avoiding local optima and finding the ideal solution with minimal control variables.Moreover,K-Nearest Neighbor(KNN)classifier was used to evaluate the effectiveness of the features identified by the proposed SCSO algorithm.The performance of the proposed SCSO algorithm was compared with six state-of-the-art and recent wrapper-based optimization algorithms using the validation metrics of classification accuracy,optimum feature size,and computational cost in seconds.The simulation results on the benchmark medical datasets revealed that the proposed SCSO-KNN approach has outperformed comparative algorithms with an average classification accuracy of 93.96%by selecting 14.2 features within 1.91 s.Additionally,the Wilcoxon rank test was used to perform the significance analysis between the proposed SCSOKNN method and six other algorithms for a p-value less than 5.00E-02.The findings revealed that the proposed algorithm produces better outcomes with an average p-value of 1.82E-02.Moreover,potential future directions are also suggested as a result of the study’s promising findings. 展开更多
关键词 Machine learning OPTIMIZATION feature selection CLASSIFICATION medical data
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部