期刊文献+
共找到271篇文章
< 1 2 14 >
每页显示 20 50 100
Short‐term and long‐term memory self‐attention network for segmentation of tumours in 3D medical images
1
作者 Mingwei Wen Quan Zhou +3 位作者 Bo Tao Pavel Shcherbakov Yang Xu Xuming Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1524-1537,共14页
Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shap... Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shapes and sizes.The popular deep learning‐based segmentation algorithms generally rely on the convolutional neural network(CNN)and Transformer.The former cannot extract the global image features effectively while the latter lacks the inductive bias and involves the complicated computation for 3D volume data.The existing hybrid CNN‐Transformer network can only provide the limited performance improvement or even poorer segmentation performance than the pure CNN.To address these issues,a short‐term and long‐term memory self‐attention network is proposed.Firstly,a distinctive self‐attention block uses the Transformer to explore the correlation among the region features at different levels extracted by the CNN.Then,the memory structure filters and combines the above information to exclude the similar regions and detect the multiple tumours.Finally,the multi‐layer reconstruction blocks will predict the tumour boundaries.Experimental results demonstrate that our method outperforms other methods in terms of subjective visual and quantitative evaluation.Compared with the most competitive method,the proposed method provides Dice(82.4%vs.76.6%)and Hausdorff distance 95%(HD95)(10.66 vs.11.54 mm)on the KiTS19 as well as Dice(80.2%vs.78.4%)and HD95(9.632 vs.12.17 mm)on the LiTS. 展开更多
关键词 3D medical images convolutional neural network self‐attention network TRANSFORMER tumor segmentation
下载PDF
Robust Multi-Watermarking Algorithm for Medical Images Based on GoogLeNet and Henon Map
2
作者 Wenxing Zhang Jingbing Li +3 位作者 Uzair Aslam Bhatti Jing Liu Junhua Zheng Yen-Wei Chen 《Computers, Materials & Continua》 SCIE EI 2023年第4期565-586,共22页
The field of medical images has been rapidly evolving since the advent of the digital medical information era.However,medical data is susceptible to leaks and hacks during transmission.This paper proposed a robust mul... The field of medical images has been rapidly evolving since the advent of the digital medical information era.However,medical data is susceptible to leaks and hacks during transmission.This paper proposed a robust multi-watermarking algorithm for medical images based on GoogLeNet transfer learning to protect the privacy of patient data during transmission and storage,as well as to increase the resistance to geometric attacks and the capacity of embedded watermarks of watermarking algorithms.First,a pre-trained GoogLeNet network is used in this paper,based on which the parameters of several previous layers of the network are fixed and the network is fine-tuned for the constructed medical dataset,so that the pre-trained network can further learn the deep convolutional features in the medical dataset,and then the trained network is used to extract the stable feature vectors of medical images.Then,a two-dimensional Henon chaos encryption technique,which is more sensitive to initial values,is used to encrypt multiple different types of watermarked private information.Finally,the feature vector of the image is logically operated with the encrypted multiple watermark information,and the obtained key is stored in a third party,thus achieving zero watermark embedding and blind extraction.The experimental results confirmthe robustness of the algorithm from the perspective ofmultiple types of watermarks,while also demonstrating the successful embedding ofmultiple watermarks for medical images,and show that the algorithm is more resistant to geometric attacks than some conventional watermarking algorithms. 展开更多
关键词 Zero watermarks GoogLeNet medical image Henon map feature vector
下载PDF
Improved Multileader Optimization with Shadow Encryption for Medical Images in IoT Environment
3
作者 Mesfer Al Duhayyim Mohammed Maray +5 位作者 Ayman Qahmash Fatma S.Alrayes Nuha Alshuqayran Jaber S.Alzahrani Mohammed Alghamdi Abdullah Mohamed 《Computers, Materials & Continua》 SCIE EI 2023年第2期3133-3149,共17页
Nowadays,security plays an important role in Internet of Things(IoT)environment especially in medical services’domains like disease prediction and medical data storage.In healthcare sector,huge volumes of data are ge... Nowadays,security plays an important role in Internet of Things(IoT)environment especially in medical services’domains like disease prediction and medical data storage.In healthcare sector,huge volumes of data are generated on a daily basis,owing to the involvement of advanced health care devices.In general terms,health care images are highly sensitive to alterations due to which any modifications in its content can result in faulty diagnosis.At the same time,it is also significant to maintain the delicate contents of health care images during reconstruction stage.Therefore,an encryption system is required in order to raise the privacy and security of healthcare data by not leaking any sensitive data.The current study introduces Improved Multileader Optimization with Shadow Image Encryption for Medical Image Security(IMLOSIE-MIS)technique for IoT environment.The aim of the proposed IMLOSIE-MIS model is to accomplish security by generating shadows and encrypting them effectively.To do so,the presented IMLOSIE-MIS model initially generates a set of shadows for every input medical image.Besides,shadow image encryption process takes place with the help of Multileader Optimization(MLO)withHomomorphic Encryption(IMLO-HE)technique,where the optimal keys are generated with the help of MLO algorithm.On the receiver side,decryption process is initially carried out and shadow image reconstruction process is conducted.The experimentation analysis was carried out on medical images and the results inferred that the proposed IMLOSIE-MIS model is an excellent performer compared to other models.The comparison study outcomes demonstrate that IMLOSIE-MIS model is robust and offers high security in IoT-enabled healthcare environment. 展开更多
关键词 medical image security image encryption shadow images homomorphic encryption optimal key generation
下载PDF
A network lightweighting method for difficult segmentation of 3D medical images
4
作者 KANG Li 龚智鑫 +1 位作者 黄建军 ZHOU Ziqi 《中国体视学与图像分析》 2023年第4期390-400,共11页
Currently,deep learning is widely used in medical image segmentation and has achieved good results.However,3D medical image segmentation tasks with diverse lesion characters,blurred edges,and unstable positions requir... Currently,deep learning is widely used in medical image segmentation and has achieved good results.However,3D medical image segmentation tasks with diverse lesion characters,blurred edges,and unstable positions require complex networks with a large number of parameters.It is computationally expensive and results in high requirements on equipment,making it hard to deploy the network in hospitals.In this work,we propose a method for network lightweighting and applied it to a 3D CNN based network.We experimented on a COVID-19 lesion segmentation dataset.Specifically,we use three cascaded one-dimensional convolutions to replace a 3D convolution,and integrate instance normalization with the previous layer of one-dimensional convolutions to accelerate network inference.In addition,we simplify test-time augmentation and deep supervision of the network.Experiments show that the lightweight network can reduce the prediction time of each sample and the memory usage by 50%and reduce the number of parameters by 60%compared with the original network.The training time of one epoch is also reduced by 50%with the segmentation accuracy dropped within the acceptable range. 展开更多
关键词 3D medical image segmentation 3D U-Net lightweight network COVID-19 lesion segmentation
下载PDF
Hybrid Single Image Super-Resolution Algorithm for Medical Images
5
作者 Walid El-Shafai Ehab Mahmoud Mohamed +2 位作者 Medien Zeghid Anas MAli Moustafa H.Aly 《Computers, Materials & Continua》 SCIE EI 2022年第9期4879-4896,共18页
High-quality medical microscopic images used for diseases detection are expensive and difficult to store.Therefore,low-resolution images are favorable due to their low storage space and ease of sharing,where the image... High-quality medical microscopic images used for diseases detection are expensive and difficult to store.Therefore,low-resolution images are favorable due to their low storage space and ease of sharing,where the images can be enlarged when needed using Super-Resolution(SR)techniques.However,it is important to maintain the shape and size of the medical images while enlarging them.One of the problems facing SR is that the performance of medical image diagnosis is very poor due to the deterioration of the reconstructed image resolution.Consequently,this paper suggests a multi-SR and classification framework based on Generative Adversarial Network(GAN)to generate high-resolution images with higher quality and finer details to reduce blurring.The proposed framework comprises five GAN models:Enhanced SR Generative Adversarial Networks(ESRGAN),Enhanced deep SR GAN(EDSRGAN),Sub-Pixel-GAN,SRGAN,and Efficient Wider Activation-B GAN(WDSR-b-GAN).To train the proposed models,we have employed images from the famous BreakHis dataset and enlarged them by 4×and 16×upscale factors with the ground truth of the size of 256×256×3.Moreover,several evaluation metrics like Peak Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index(SSIM),Multiscale Structural Similarity Index(MS-SSIM),and histogram are applied to make comprehensive and objective comparisons to determine the best methods in terms of efficiency,training time,and storage space.The obtained results reveal the superiority of the proposed models over traditional and benchmark models in terms of color and texture restoration and detection by achieving an accuracy of 99.7433%. 展开更多
关键词 GAN medical images SSIM MS-SSIM PSNR SISR
下载PDF
ENTROPY TOLERANT FUZZY C-MEANS IN MEDICAL IMAGES
6
作者 S.R.KANNAN S.RAMATHILAGAM +1 位作者 R.DEVI YUEH-MIN HUANG 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2011年第4期447-462,共16页
Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spa... Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spatial resolution and is also corrupted by heavy noise,outliers,and other imaging artifacts.In this paper,we intend to develop efficient robust segmentation algorithms based on fuzzy clustering approach for segmenting the DCE-BMRs.Our proposed segmentation algorithms have been amalgamated with effective kernel-induced distance measure on standard fuzzy c-means algorithm along with the spatial neighborhood information,entropy term,and tolerance vector into a fuzzy clustering structure for segmenting the DCE-BMRI.The significant feature of our proposed algorithms is its capability tofind the optimal membership grades and obtain effective cluster centers automatically by minimizing the proposed robust objective functions.Also,this article demonstrates the superiority of the proposed algorithms for segmenting DCE-BMRI in comparison with other recent kernel-based fuzzy c-means techniques.Finally the clustering accuracies of the proposed algorithms are validated by using silhouette method in comparison with existed fuzzy clustering algorithms. 展开更多
关键词 Fuzzy clustering ALGORITHMS entropy method SEGMENTATION medical images
下载PDF
Reversible Watermarking Method with Low Distortion for the Secure Transmission of Medical Images
7
作者 Rizwan Taj Feng Tao +4 位作者 Shahzada Khurram Ateeq Ur Rehman Syed Kamran Haider Akber Abid Gardezi Saima Kanwal 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1309-1324,共16页
In telemedicine,the realization of reversible watermarking through information security is an emerging research field.However,adding watermarks hinders the distribution of pixels in the cover image because it creates ... In telemedicine,the realization of reversible watermarking through information security is an emerging research field.However,adding watermarks hinders the distribution of pixels in the cover image because it creates distortions(which lead to an increase in the detection probability).In this article,we introduce a reversible watermarking method that can transmit medical images with minimal distortion and high security.The proposed method selects two adjacent gray pixels whose least significant bit(LSB)is different from the relevant message bit and then calculates the distortion degree.We use the LSB pairing method to embed the secret matrix of patient record into the cover image and exchange pixel values.Experimental results show that the designed method is robust to different attacks and has a high PSNR(peak signal-to-noise ratio)value.The MRI image quality and imperceptibility are verified by embedding a secret matrix of up to 262,688 bits to achieve an average PSNR of 51.657 dB.In addition,the proposed algorithm is tested against the latest technology on standard images,and it is found that the average PSNR of our proposed reversible watermarking technology is higher(i.e.,51.71 dB).Numerical results show that the algorithm can be extended to normal images and medical images. 展开更多
关键词 LSB reversible watermarking medical images security data distortion
下载PDF
Content-based retrieval based on binary vectors for 2-D medical images
8
作者 龚鹏 邹亚东 洪海 《吉林大学学报(信息科学版)》 CAS 2003年第S1期127-130,共4页
In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts... In medical research and clinical diagnosis, automated or computer-assisted classification and retrieval methods are highly desirable to offset the high cost of manual classification and manipulation by medical experts. To facilitate the decision-making in the health-care and the related areas, in this paper, a two-step content-based medical image retrieval algorithm is proposed. Firstly, in the preprocessing step, the image segmentation is performed to distinguish image objects, and on the basis of the ... 展开更多
关键词 Content-based image retrieval medical images Feature space: Spatial relationship Visual information retrieval
下载PDF
Effect of the Pixel Interpolation Method for Downsampling Medical Images on Deep Learning Accuracy
9
作者 Daisuke Hirahara Eichi Takaya +2 位作者 Mizuki Kadowaki Yasuyuki Kobayashi Takuya Ueda 《Journal of Computer and Communications》 2021年第11期150-156,共7页
<strong>Background:</strong> High-resolution medical images often need to be downsampled because of the memory limitations of the hardware used for machine learning. Although various image interpolation me... <strong>Background:</strong> High-resolution medical images often need to be downsampled because of the memory limitations of the hardware used for machine learning. Although various image interpolation methods are applicable to downsampling, the effect of data preprocessing on the learning performance of convolutional neural networks (CNNs) has not been fully investigated. <strong>Methods:</strong> In this study, five different pixel interpolation algorithms (nearest neighbor, bilinear, Hamming window, bicubic, and Lanczos interpolation) were used for image downsampling to investigate their effects on the prediction accuracy of a CNN. Chest X-ray images from the NIH public dataset were examined by downsampling 10 patterns. <strong>Results:</strong> The accuracy improved with a decreasing image size, and the best accuracy was achieved at 64 × 64 pixels. Among the interpolation methods, bicubic interpolation obtained the highest accuracy, followed by the Hamming window. 展开更多
关键词 Downsampling INTERPOLATION Deep Learning Convolutional Neural Networks medical images Nearest Neighbor BILINEAR Hamming Window Bicubic LANCZOS
下载PDF
Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images 被引量:2
10
作者 Areej A.Malibari Reem Alshahrani +3 位作者 Fahd N.Al-Wesabi Siwar Ben Haj Hassine Mimouna Abdullah Alkhonaini Anwer Mustafa Hilal 《Computers, Materials & Continua》 SCIE EI 2022年第8期3799-3813,共15页
Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases.Magnetic resonance imaging(MRI)is a widely utilized tool for the classification and de... Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases.Magnetic resonance imaging(MRI)is a widely utilized tool for the classification and detection of prostate cancer.Since the manual screening process of prostate cancer is difficult,automated diagnostic methods become essential.This study develops a novel Deep Learning based Prostate Cancer Classification(DTL-PSCC)model using MRI images.The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors.In addition,the fuzzy k-nearest neighbour(FKNN)model is utilized for classification process where the class labels are allotted to the input MRI images.Moreover,the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm(KHA)which results in improved classification performance.In order to demonstrate the good classification outcome of the DTL-PSCC technique,a wide range of simulations take place on benchmark MRI datasets.The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%. 展开更多
关键词 MRI images prostate cancer deep learning medical image processing metaheuristics krill herd algorithm
下载PDF
Privacy Protection for Medical Images Based on DenseNet and Coverless Steganography 被引量:2
11
作者 Yun Tan Jiaohua Qin +3 位作者 Hao Tang Xuyu Xiang Ling Tan Neal NXiong 《Computers, Materials & Continua》 SCIE EI 2020年第9期1797-1817,共21页
With the development of the internet of medical things(IoMT),the privacy protection problem has become more and more critical.In this paper,we propose a privacy protection scheme for medical images based on DenseNet a... With the development of the internet of medical things(IoMT),the privacy protection problem has become more and more critical.In this paper,we propose a privacy protection scheme for medical images based on DenseNet and coverless steganography.For a given group of medical images of one patient,DenseNet is used to regroup the images based on feature similarity comparison.Then the mapping indexes can be constructed based on LBP feature and hash generation.After mapping the privacy information with the hash sequences,the corresponding mapped indexes of secret information will be packed together with the medical images group and released to the authorized user.The user can extract the privacy information successfully with a similar method of feature analysis and index construction.The simulation results show good performance of robustness.And the hiding success rate also shows good feasibility and practicability for application.Since the medical images are kept original without embedding and modification,the performance of crack resistance is outstanding and can keep better quality for diagnosis compared with traditional schemes with data embedding. 展开更多
关键词 Privacy protection medical image coverless steganography DenseNet LBP
下载PDF
Artifacts Reduction Using Multi-Scale Feature Attention Network in Compressed Medical Images 被引量:1
12
作者 Seonjae Kim Dongsan Jun 《Computers, Materials & Continua》 SCIE EI 2022年第2期3267-3279,共13页
Medical image compression is one of the essential technologies to facilitate real-time medical data transmission in remote healthcare applications.In general,image compression can introduce undesired coding artifacts,... Medical image compression is one of the essential technologies to facilitate real-time medical data transmission in remote healthcare applications.In general,image compression can introduce undesired coding artifacts,such as blocking artifacts and ringing effects.In this paper,we proposed a Multi-Scale Feature Attention Network(MSFAN)with two essential parts,which are multi-scale feature extraction layers and feature attention layers to efficiently remove coding artifacts of compressed medical images.Multiscale feature extraction layers have four Feature Extraction(FE)blocks.Each FE block consists of five convolution layers and one CA block for weighted skip connection.In order to optimize the proposed network architectures,a variety of verification tests were conducted using validation dataset.We used Computer Vision Center-Clinic Database(CVC-ClinicDB)consisting of 612 colonoscopy medical images to evaluate the enhancement of image restoration.The proposedMSFAN can achieve improved PSNR gains as high as 0.25 and 0.24 dB on average compared to DnCNNand DCSC,respectively. 展开更多
关键词 medical image processing convolutional neural network deep learning TELEMEDICINE artifact reduction image restoration
下载PDF
A Triple-Channel Encrypted Hybrid Fusion Technique to Improve Security of Medical Images 被引量:1
13
作者 Ahmed S.Salama Mohamed Amr Mokhtar +2 位作者 Mazhar B.Tayel Esraa Eldesouky Ahmed Ali 《Computers, Materials & Continua》 SCIE EI 2021年第7期431-446,共16页
Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Tr... Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform(DWT)with the energy compaction of the Discrete Wavelet Transform(DCT).The multi-level Encryption-based Hybrid Fusion Technique(EbhFT)aims to achieve great advances in terms of imperceptibility and security of medical images.A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform.Afterwards,a 64-bit hex key is employed to encrypt the host image as well as participate in the second key creation process to encode the watermark.Lastly,a PN-sequence key is formed along with a supplementary key in the third layer of the EbHFT.Thus,the watermarked image is generated by enclosing both keys into DWT and DCT coefficients.The fusions ability of the proposed EbHFT technique makes the best use of the distinct privileges of using both DWT and DCT methods.In order to validate the proposed technique,a standard dataset of medical images is used.Simulation results show higher performance of the visual quality(i.e.,57.65)for the watermarked forms of all types of medical images.In addition,EbHFT robustness outperforms an existing scheme tested for the same dataset in terms of Normalized Correlation(NC).Finally,extra protection for digital images from against illegal replicating and unapproved tampering using the proposed technique. 展开更多
关键词 medical image processing digital image watermarking discrete wavelet transforms discrete cosine transform encryption image fusion hybrid fusion technique
下载PDF
Unified Analysis Specific to the Medical Field in the Interpretation of Medical Images through the Use of Deep Learning 被引量:1
14
作者 Tudor Florin Ursuleanu Andreea Roxana Luca +5 位作者 Liliana Gheorghe Roxana Grigorovici Stefan Iancu Maria Hlusneac Cristina Preda Alexandru Grigorovici 《E-Health Telecommunication Systems and Networks》 2021年第2期41-74,共34页
Deep learning (DL) has seen an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image. The purpose of the work converges in determining the importan... Deep learning (DL) has seen an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image. The purpose of the work converges in determining the importance of each component, describing the specificity and correlations of these elements involved in achieving the precision of interpretation of medical images using DL. The major contribution of this work is primarily to the updated characterisation of the characteristics of the constituent elements of the deep learning process, scientific data, methods of knowledge incorporation, DL models according to the objectives for which they were designed and the presentation of medical applications in accordance with these tasks. Secondly, it describes the specific correlations between the quality, type and volume of data, the deep learning patterns used in the interpretation of diagnostic medical images and their applications in medicine. Finally presents problems and directions of future research. Data quality and volume, annotations and labels, identification and automatic extraction of specific medical terms can help deep learning models perform image analysis tasks. Moreover, the development of models capable of extracting unattended features and easily incorporated into the architecture of DL networks and the development of techniques to search for a certain network architecture according to the objectives set lead to performance in the interpretation of medical images. 展开更多
关键词 medical Image Analysis Data Types Labels Deep Learning Models
下载PDF
Fusion of Medical Images in Wavelet Domain:A Hybrid Implementation
15
作者 Satya Prakash Yadav Sachin Yadav 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第1期303-321,共19页
This paper presents a low intricate,profoundly energy effective MRI Images combination intended for remote visual sensor frameworks which leads to improved understanding and implementation of treatment;especially for ... This paper presents a low intricate,profoundly energy effective MRI Images combination intended for remote visual sensor frameworks which leads to improved understanding and implementation of treatment;especially for radiology.This is done by combining the original picture which leads to a significant reduction in the computation time and frequency.The proposed technique conquers the calculation and energy impediment of low power tools and is examined as far as picture quality and energy is concerned.Reenactments are performed utilizing MATLAB 2018a,to quantify the resultant vitality investment funds and the reproduction results show that the proposed calculation is very quick and devours just around 1%of vitality decomposition by the hybrid combination plans.Likewise,the effortlessness of our proposed strategy makes it increasingly suitable for continuous applications. 展开更多
关键词 medical image fusion wavelet transform DWT DCT ICA fusion techniques multimodal fusion
下载PDF
A novel image fusion algorithm based on 2D scale-mixing complex wavelet transform and Bayesian MAP estimation for multimodal medical images
16
作者 Abdallah Bengueddoudj Zoubeida Messali Volodymyr Mosorov 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第3期52-68,共17页
In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Poste... In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method. 展开更多
关键词 medical imaging multimodal medical image fusion scale mixing complex wavelet transform MAP Bayes estimation principal component analysis.
下载PDF
Research on a bifurcation location algorithm of a drainage tube based on 3D medical images
17
作者 Qiuling Pan Wei Zhu +2 位作者 Xiaolin Zhang Jincai Chang Jianzhong Cui 《Visual Computing for Industry,Biomedicine,and Art》 2020年第1期7-17,共11页
Based on patient computerized tomography data,we segmented a region containing an intracranial hematoma using the threshold method and reconstructed the 3D hematoma model.To improve the efficiency and accuracy of iden... Based on patient computerized tomography data,we segmented a region containing an intracranial hematoma using the threshold method and reconstructed the 3D hematoma model.To improve the efficiency and accuracy of identifying puncture points,a point-cloud search arithmetic method for modified adaptive weighted particle swarm optimization is proposed and used for optimal external axis extraction.According to the characteristics of the multitube drainage tube and the clinical needs of puncture for intracranial hematoma removal,the proposed algorithm can provide an optimal route for a drainage tube for the hematoma,the precise position of the puncture point,and preoperative planning information,which have considerable instructional significance for clinicians. 展开更多
关键词 Multitube drainage tube Bifurcation localization algorithm 3D medical image Path planning Intracranial hematoma
下载PDF
Denoising Medical Images Using Deep Learning in IoT Environment
18
作者 Sujeet More Jimmy Singla +2 位作者 Oh-Young Song Usman Tariq Sharaf Malebary 《Computers, Materials & Continua》 SCIE EI 2021年第12期3127-3143,共17页
Medical Resonance Imaging(MRI)is a noninvasive,nonradioactive,and meticulous diagnostic modality capability in the field of medical imaging.However,the efficiency of MR image reconstruction is affected by its bulky im... Medical Resonance Imaging(MRI)is a noninvasive,nonradioactive,and meticulous diagnostic modality capability in the field of medical imaging.However,the efficiency of MR image reconstruction is affected by its bulky image sets and slow process implementation.Therefore,to obtain a high-quality reconstructed image we presented a sparse aware noise removal technique that uses convolution neural network(SANR_CNN)for eliminating noise and improving the MR image reconstruction quality.The proposed noise removal or denoising technique adopts a fast CNN architecture that aids in training larger datasets with improved quality,and SARN algorithm is used for building a dictionary learning technique for denoising large image datasets.The proposed SANR_CNN model also preserves the details and edges in the image during reconstruction.An experiment was conducted to analyze the performance of SANR_CNN in a few existing models in regard with peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and mean squared error(MSE).The proposed SANR_CNN model achieved higher PSNR,SSIM,and MSE efficiency than the other noise removal techniques.The proposed architecture also provides transmission of these denoised medical images through secured IoT architecture. 展开更多
关键词 medical resonance imaging convolutional neural network DENOISING contrast enhancement internet of things rheumatoid arthritis
下载PDF
SUNet++: A Deep Network with Channel Attention for Small-Scale Object Segmentation on 3D Medical Images
19
作者 Lan Zhang Kejia Zhang Haiwei Pan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第4期628-638,共11页
As a deep learning network with an encoder-decoder architecture,UNet and its series of improved versions have been widely used in medical image segmentation with great applications.However,when used to segment targets... As a deep learning network with an encoder-decoder architecture,UNet and its series of improved versions have been widely used in medical image segmentation with great applications.However,when used to segment targets in 3D medical images such as magnetic resonance imaging(MRI),computed tomography(CT),these models do not model the relevance of images in vertical space,resulting in poor accurate analysis of consecutive slices of the same patient.On the other hand,the large amount of detail lost during the encoding process makes these models incapable of segmenting small-scale tumor targets.Aiming at the scene of small-scale target segmentation in 3D medical images,a fully new neural network model SUNet++is proposed on the basis of UNet and UNet++.SUNet++improves the existing models mainly in three aspects:1)the modeling strategy of slice superposition is used to thoroughly excavate the three dimensional information of the data;2)by adding an attention mechanism during the decoding process,small scale targets in the picture are retained and amplified;3)in the up-sampling process,the transposed convolution operation is used to further enhance the effect of the model.In order to verify the effect of the model,we collected and produced a dataset of hyperintensity MRI liver-stage images containing over 400 cases of liver nodules.Experimental results on both public and proprietary datasets demonstrate the superiority of SUNet++in small-scale target segmentation of three-dimensional medical images. 展开更多
关键词 3D medical images small-scale target SEGMENTATION attention mechanism
原文传递
A Multi-Stage Security Solution for Medical Color Images in Healthcare Applications
20
作者 Walid El-Shafai Fatma Khallaf +2 位作者 El-Sayed M.El-Rabaie Fathi E.Abd El-Samie Iman Almomani 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3599-3618,共20页
This paper presents a robust multi-stage security solution based on fusion,encryption,and watermarking processes to transmit color healthcare images,efficiently.The presented solution depends on the features of discre... This paper presents a robust multi-stage security solution based on fusion,encryption,and watermarking processes to transmit color healthcare images,efficiently.The presented solution depends on the features of discrete cosine transform(DCT),lifting wavelet transform(LWT),and singular value decomposition(SVD).The primary objective of this proposed solution is to ensure robustness for the color medical watermarked images against transmission attacks.During watermark embedding,the host color medical image is transformed into four sub-bands by employing three stages of LWT.The resulting low-frequency sub-band is then transformed by employing three stages of DCT followed by SVD operation.Furthermore,a fusion process is used for combining different watermarks into a single watermark image.This single fused image is then ciphered using Deoxyribose Nucleic Acid(DNA)encryption to strengthen the security.Then,the DNA-ciphered fused watermark is embedded in the host medical image by applying the suggested watermarking technique to obtain the watermarked image.The main contribution of this work is embedding multiple watermarks to prevent identity theft.In the presence of different multimedia attacks,several simulation tests on different colormedical images have been performed.The results prove that the proposed security solution achieves a decent imperceptibility quality with high Peak Signal-to-Noise Ratio(PSNR)values and high correlation between the extracted and original watermark images.Moreover,the watermark image extraction process succeeds in achieving high efficiency in the presence of attacks compared with related works. 展开更多
关键词 medical images DNA encryption digital image watermarking FUSION healthcare applications
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部