Case-Based Learning (CBL) has become an effective pedagogy for student-centered learning in medical education, which is founded on persistent patient cases. Flippped learning and Internet of Things (IoTs) concepts...Case-Based Learning (CBL) has become an effective pedagogy for student-centered learning in medical education, which is founded on persistent patient cases. Flippped learning and Internet of Things (IoTs) concepts have gained significant attention in recent years. Using these concepts in conjunction with CBL can improve learning ability by providing real evolutionary medical eases. It also enables students to build confidence in their decision making, and efficiently enhances teamwork in the learning environment. We propose an IoT-based Flip Learning Platform, called IoTFLiP, where an IoT infrastrneture is exploited to support flipped case-based learning in a cloud environment with state of the art security and privacy measures for personalized medical data. It also provides support for application delivery in private, public, and hybrid approaches. The proposed platform is an extension of our Interactive Case-Based Flipped Learning Tool (ICBFLT), which has been developed based on current CBL practices. ICBFLT formulates summaries of CBL cases through synergy between students' and medical expert knowledge. The low cost and reduced size of sensor device, support of IoTs, and recent flipped learning advancements can enhance medical students' academic and practical experiences. In order to demonstrate a working scenario for the proposed IoTFLiP platform, real-time data from IoTs gadgets is collected to generate a real-world case for a medical student using ICBFLT.展开更多
Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu...Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.展开更多
文摘Case-Based Learning (CBL) has become an effective pedagogy for student-centered learning in medical education, which is founded on persistent patient cases. Flippped learning and Internet of Things (IoTs) concepts have gained significant attention in recent years. Using these concepts in conjunction with CBL can improve learning ability by providing real evolutionary medical eases. It also enables students to build confidence in their decision making, and efficiently enhances teamwork in the learning environment. We propose an IoT-based Flip Learning Platform, called IoTFLiP, where an IoT infrastrneture is exploited to support flipped case-based learning in a cloud environment with state of the art security and privacy measures for personalized medical data. It also provides support for application delivery in private, public, and hybrid approaches. The proposed platform is an extension of our Interactive Case-Based Flipped Learning Tool (ICBFLT), which has been developed based on current CBL practices. ICBFLT formulates summaries of CBL cases through synergy between students' and medical expert knowledge. The low cost and reduced size of sensor device, support of IoTs, and recent flipped learning advancements can enhance medical students' academic and practical experiences. In order to demonstrate a working scenario for the proposed IoTFLiP platform, real-time data from IoTs gadgets is collected to generate a real-world case for a medical student using ICBFLT.
文摘Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.