期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Analysis and evaluation on pressure fluctuations in air dense medium fluidized bed 被引量:4
1
作者 Sheng Cheng Duan Chenlong +2 位作者 Zhao Yuemin Dong Liang Luo Zhenfu 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期461-467,共7页
Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and prop... Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and propagation of pressure fluctuations in the air dense medium fluidized bed have been discussed.Drift rate and collision rate of particles were employed to deduce the correlation between voidage and pressure fluctuations. Simultaneously, a dynamic pressure fluctuation measuring and analysis system was established. Based on frequency domain analysis and wavelet analysis, collected signals were disassembled and analyzed. Results show gradually intensive motion of particles increases magnitudes of signal components with lower frequencies. As a result of violent particle motion, the magnitude of real pressure signal's frequency experienced an increase as air velocity increased moderately. Wavelet analysis keeps edge features of the real signal and eliminates the noise efficaciously. The frequency of denoised signal is closed to that of pressure signal identified in frequency domain analysis. 展开更多
关键词 Air dense medium fluidized bed Pressure fluctuations Frequency domain analysis Wavelet analysis Particle distribution function
下载PDF
Numerical simulation and experimental verification of bubble size distribution in an air dense medium fluidized bed 被引量:11
2
作者 He Jingfeng Zhao Yuemin +2 位作者 Luo Zhenfu He Yaqun Duan Chenlong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期387-393,共7页
Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined ... Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB. 展开更多
关键词 Air dense medium fluidized bed Numerical simulation Bubble dynamical behavior Prediction model
下载PDF
Characteristics of fluidization and dry-beneficiation of a wide-size-range medium-solids fluidized bed 被引量:2
3
作者 Tang Ligang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期467-471,共5页
Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studi... Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studied. The numerical simulation results show that 0.15–0.06 mm fine magnetite powder can decrease the disturbances caused by the bubbles. This is beneficial to the uniformity of the gas-solid interactions and thus to the uniformity and stability of the bed density and height. The experimental results show that, with an increase in the fine coal content in medium solids, both the fluidization quality and the beneficiation performance of the bed decreased gradually. When the fine coal content was no more than 13%, a relatively high superficial gas velocity increased the beneficiation efficiency. When the content was more than 13%, part of the fine coal was separated, leading to product layers. The separation efficiency was therefore gradually decreased. The models for predicting the bed density standard deviation and the probable error, E, value were both proposed. The E value can reach to 0.04–0.07 g/cm^3 under the optimized experimental parameters. This work provides a foundation for the adjustment of the bed density and the separation performance of the modularized 40–60 ton per hour dry coalbeneficiation industrial system. 展开更多
关键词 medium solids Wide size range Gas-solid fluidized bed Fluidization Dry beneficiation of coal
下载PDF
The Forming-Mechanism and Role of Creativity Thinking in Dry Coal Beneficiation of Coal with Air-Dense Medium Fluidized Bed
4
作者 黎强 陈清如 《Journal of China University of Mining and Technology》 2001年第1期65-68,共4页
In this paper, the authors point out that the Creativity is an inevitable request in solving engineering and technological problems and that the coal beneficiation technology with air dense medium fluidized bed is a r... In this paper, the authors point out that the Creativity is an inevitable request in solving engineering and technological problems and that the coal beneficiation technology with air dense medium fluidized bed is a result of reversal thinking, and its forming mechanism is the use of other things for reference and the transplantation. 展开更多
关键词 coal beneficiation air dense medium fluidized bed creativity thinking use for reference transplantaton
下载PDF
Progress in developments of dry coal beneficiation 被引量:4
5
作者 Yuemin Zhao Xuliang Yang +2 位作者 Zhenfu Luo Chenlong Duan Shulei Song 《International Journal of Coal Science & Technology》 EI CAS 2014年第1期103-112,共10页
China’s energy supply heavily relies on coal and China’s coal resource and water resource has a reverse distribution.The problem of water shortages restricts the applications of wet coal beneficiation technologies i... China’s energy supply heavily relies on coal and China’s coal resource and water resource has a reverse distribution.The problem of water shortages restricts the applications of wet coal beneficiation technologies in drought regions.The present situation highlights the significance and urgency of developing dry beneficiation technologies of coal.Besides,other countries that produce large amounts of coal also encounter serious problem of lack of water for coal beneficiation,such as American,Australia,Canada,South Africa,Turkey and India.Thus,dry coal beneficiation becomes the research hot-points in the field of coal cleaning worldwide in recent years.This paper systematically reviewed the promising research efforts on dry coal beneficiation reported in literature in last 5 years and discussed the progress in developments of dry coal beneficiation worldwide.Finally,we also elaborated the prospects and the challenges of the development of dry coal beneficiation. 展开更多
关键词 Dry coal beneficiation Air dense medium fluidized bed Density segregation Vibrated fluidized bed
下载PDF
Comparison of coal separation characteristics based on different separating approaches in dry coal beneficiation flowsheet 被引量:2
6
作者 贺靖峰 赵跃民 +2 位作者 何亚群 骆振福 段晨龙 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1651-1659,共9页
The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. Th... The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. The experimental and simulation results indicate that the dense medium gas-solid fluidized bed can provide uniform distribution and stable fluctuation of bed densities at various heights. Two types of different separating approaches were compared using the dry coal beneficiation flowsheet. Compared with obtaining cleaning coal in the first stage of the flowsheet, a higher yield of the cleaning coal and better separation efficiency can be achieved when discharging gangue in the first stage. Finally, the results indicate that 64.86% pure cleaning coal with an ash content of 11.77% and 13.53% middlings were obtained, and 21.61% gangue was removed in two successive separation stages with the probable errors of 0.05 and 0.07 g/cm3, respectively. 展开更多
关键词 separation characteristic dense medium gas-solid fluidized bed separating approach numerical simulation density stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部