Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0....Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.展开更多
The behavior of rolling contact fatigue (RCF) of medium carbon bainitic back-up roll steel was investigated under its actual work conditions. A kind of asperity-scale surface originated cracks, which is lying parallel...The behavior of rolling contact fatigue (RCF) of medium carbon bainitic back-up roll steel was investigated under its actual work conditions. A kind of asperity-scale surface originated cracks, which is lying parallel or at an acute angle to the surfaces, initiated after unidirectional plastic flow of the material in thin surface layer had occurred. Theoretical analysis indicates that they nucleate due to plastic ratcheting induced by asperity contact stresses, and consequently are named as ratcheting cracks. After nucleating and initially propagating, they arrest at some depth and resume propagating till about 70%-80% of the RCF failure life by initially turning parallel to contact surfaces. Their behavior of initiation and propagation is confined to a thin layer prior to the formation of surface distress. According to the critical principle of the preventive grinding strategy, removing the asperity influenced surface layer at about 70%-80% of the RCF failure life can effectively prevent the ratcheting cracks from developing into surface distress, which can lead to the formation of macro-RCF failure soon.展开更多
The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units o...The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units of bainitic phase transformation.No carbide is precipitated from them.The bainitic O-carbides are precipitated from γ-α interface or carbon-rich austenite.The mode of arrangement of the units in ferrite sublath packet is in uni-or bi-di- rection.Single surface relief is produced by the accumulation of uniform shear strains with all the ferrite units arranged unidirectionally in a sublath packet,while tent-shaped surface relief is formed by the integration of the uniform shear strains of two groups with ferrite units piling up in two directions and growing face to face;whereas if they grow back to back,the integra- tion will be responsible for invert-tent-shaped surface relief.The interface trace between two groups of ferrite units in a sublath packet is shown as“midrib”.展开更多
Two kinds of low carbon bainitic steels,Nb-free Mo bearing and Nb + Mo addition steels,were cold rolled and annealed to investigate the effect of micro-alloying element Nb on the microstructure and properties of Mo mi...Two kinds of low carbon bainitic steels,Nb-free Mo bearing and Nb + Mo addition steels,were cold rolled and annealed to investigate the effect of micro-alloying element Nb on the microstructure and properties of Mo microalloyed low carbon high strength bainitic steel. No precipitates were observed in Nb-free Mo bearing steel,whereas,two types of precipitates,i.e.,Nb( C,N) and composite( Nb,Mo)( C,N),were observed in the Nb + Mo microalloyed steel,resulting in precipitation strengthening. The strength of Mo bearing steel was improved by addition of Nb under the same annealing conditions. The grain size of Nb addition steel was almost the same as Nb-free steel. Unlike the obvious grain refinement and precipitation strengthening in hot rolling,the increase in yield strength of Nb addition steels in cold rolling and annealing mainly results from the precipitation strengthening,while the effect of grain refinement strengthening can be almost ignored.展开更多
To improve the current grinding procedure of the back-up roll of CVC hot rolling mills so that the back-up roll service life can be extended, the crack initiation and propagation behavior of medium carbon bainitic bac...To improve the current grinding procedure of the back-up roll of CVC hot rolling mills so that the back-up roll service life can be extended, the crack initiation and propagation behavior of medium carbon bainitic back-up roll steel was investigated, a kind of asperity-scale, surface originated vertical short cracks occurred at 5 × 10^2 -1 × 10^4 cycles. Theoretical analysis indicated that the maximum tensile stress occurring at the back edge of the contact of asperities keeps at above 1 347. 97 MPa, and ratcheting and cyclic plastic deformation take place at such sites within 1 × 10^4 cycles. The early initiation of the vertical short cracks is caused by the asperity contact. According to the crack initiation mechanism, short crack behavior and preventive grinding strategy, steel consumption can be reduced considerably by decreasing the surface roughness and removing the asperity influenced surface thin layer at about 70%-80% of the surface distress life.展开更多
This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and400℃.The results ...This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and400℃.The results show that martensite,bainite,and retained austenite(RA)are the main microstructural phases.The austempering treatments at 360 and 400℃ caused the formation of carbon-poor ferrite in the matrix,and the transformation of ultrafine bainite into coarse lath bainite and granular bainite,respectively.Thick filmy RA was distributed between bainite laths.The polygonal martensiteaustenite islands and blocky RA formed along the grain boundaries.The average carbon concentration in the matrix decreased with the temperature increase,while the impact toughness initially increased and then dropped with temperature.The quasi-cleavage brittle fracture dominated the impact fracture mechanism of the sample austempered at 240℃ by forming tearing surfaces and tearing steps.The microcracks disappeared in the RA on the prior austenite grain boundaries.On the other side,the fracture surface of the sample austempered at 360℃ exhibited ductile fracture with deep dimples and brittle fracture with cleavage river patterns.The polygonal martensite-austenite islands or blocky RA constrained the microcracks.After austempered at 400℃,the brittle fracture was dominant,showing river patterns,and the microcracks propagated through the granular bainite without any resistance.展开更多
The effect of austenitizing temperature and Cr, Mo and Mn addition on microstructure and mechanical properties of V microalloyed medium carbon steel has been studied by means of metallography and mechanical testing. T...The effect of austenitizing temperature and Cr, Mo and Mn addition on microstructure and mechanical properties of V microalloyed medium carbon steel has been studied by means of metallography and mechanical testing. The addition of Cr, Mn and Mo leads to a decrease in yield strength (YS) by approximate 100 MPa in comparison to the base steel. It is assumed that Mn and Mo increase hardenability by promoting the formation of bainitic sheaves (BS), i.e. by suppressing the formation of ferrite-pearlite and acicular ferrite (FP-AF). Cr at the level used in this work is not that effective. Presence and packet size of bainitic sheaves decrease the Charpy V-notch impact energy at 20 ℃ (CVN20) in comparison to ferrite-pearlite and acicular ferrite microstructures.展开更多
基金Funded by the National Natural Science Foundation of China(NSFC)(No.51274154)
文摘Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.
文摘The behavior of rolling contact fatigue (RCF) of medium carbon bainitic back-up roll steel was investigated under its actual work conditions. A kind of asperity-scale surface originated cracks, which is lying parallel or at an acute angle to the surfaces, initiated after unidirectional plastic flow of the material in thin surface layer had occurred. Theoretical analysis indicates that they nucleate due to plastic ratcheting induced by asperity contact stresses, and consequently are named as ratcheting cracks. After nucleating and initially propagating, they arrest at some depth and resume propagating till about 70%-80% of the RCF failure life by initially turning parallel to contact surfaces. Their behavior of initiation and propagation is confined to a thin layer prior to the formation of surface distress. According to the critical principle of the preventive grinding strategy, removing the asperity influenced surface layer at about 70%-80% of the RCF failure life can effectively prevent the ratcheting cracks from developing into surface distress, which can lead to the formation of macro-RCF failure soon.
文摘The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units of bainitic phase transformation.No carbide is precipitated from them.The bainitic O-carbides are precipitated from γ-α interface or carbon-rich austenite.The mode of arrangement of the units in ferrite sublath packet is in uni-or bi-di- rection.Single surface relief is produced by the accumulation of uniform shear strains with all the ferrite units arranged unidirectionally in a sublath packet,while tent-shaped surface relief is formed by the integration of the uniform shear strains of two groups with ferrite units piling up in two directions and growing face to face;whereas if they grow back to back,the integra- tion will be responsible for invert-tent-shaped surface relief.The interface trace between two groups of ferrite units in a sublath packet is shown as“midrib”.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51274154)the National High Technology Research and Development Program of China(Grant No.2012AA03A504)+1 种基金the State Key Laboratory of Development and Application Technology of Automotive Steels(Baosteel Group)Key Project of Hubei Education Committee(Grant No.20121101)
文摘Two kinds of low carbon bainitic steels,Nb-free Mo bearing and Nb + Mo addition steels,were cold rolled and annealed to investigate the effect of micro-alloying element Nb on the microstructure and properties of Mo microalloyed low carbon high strength bainitic steel. No precipitates were observed in Nb-free Mo bearing steel,whereas,two types of precipitates,i.e.,Nb( C,N) and composite( Nb,Mo)( C,N),were observed in the Nb + Mo microalloyed steel,resulting in precipitation strengthening. The strength of Mo bearing steel was improved by addition of Nb under the same annealing conditions. The grain size of Nb addition steel was almost the same as Nb-free steel. Unlike the obvious grain refinement and precipitation strengthening in hot rolling,the increase in yield strength of Nb addition steels in cold rolling and annealing mainly results from the precipitation strengthening,while the effect of grain refinement strengthening can be almost ignored.
文摘To improve the current grinding procedure of the back-up roll of CVC hot rolling mills so that the back-up roll service life can be extended, the crack initiation and propagation behavior of medium carbon bainitic back-up roll steel was investigated, a kind of asperity-scale, surface originated vertical short cracks occurred at 5 × 10^2 -1 × 10^4 cycles. Theoretical analysis indicated that the maximum tensile stress occurring at the back edge of the contact of asperities keeps at above 1 347. 97 MPa, and ratcheting and cyclic plastic deformation take place at such sites within 1 × 10^4 cycles. The early initiation of the vertical short cracks is caused by the asperity contact. According to the crack initiation mechanism, short crack behavior and preventive grinding strategy, steel consumption can be reduced considerably by decreasing the surface roughness and removing the asperity influenced surface thin layer at about 70%-80% of the surface distress life.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0300105)the Fundamental Research Funds for the Central Universities(No.N180725021)the Fundamental Research Funds for the Central Universities(No.N2024005-4)。
文摘This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and400℃.The results show that martensite,bainite,and retained austenite(RA)are the main microstructural phases.The austempering treatments at 360 and 400℃ caused the formation of carbon-poor ferrite in the matrix,and the transformation of ultrafine bainite into coarse lath bainite and granular bainite,respectively.Thick filmy RA was distributed between bainite laths.The polygonal martensiteaustenite islands and blocky RA formed along the grain boundaries.The average carbon concentration in the matrix decreased with the temperature increase,while the impact toughness initially increased and then dropped with temperature.The quasi-cleavage brittle fracture dominated the impact fracture mechanism of the sample austempered at 240℃ by forming tearing surfaces and tearing steps.The microcracks disappeared in the RA on the prior austenite grain boundaries.On the other side,the fracture surface of the sample austempered at 360℃ exhibited ductile fracture with deep dimples and brittle fracture with cleavage river patterns.The polygonal martensite-austenite islands or blocky RA constrained the microcracks.After austempered at 400℃,the brittle fracture was dominant,showing river patterns,and the microcracks propagated through the granular bainite without any resistance.
基金indebted to Ministry of Education and Science of Serbia for financial support(Project OI174004)
文摘The effect of austenitizing temperature and Cr, Mo and Mn addition on microstructure and mechanical properties of V microalloyed medium carbon steel has been studied by means of metallography and mechanical testing. The addition of Cr, Mn and Mo leads to a decrease in yield strength (YS) by approximate 100 MPa in comparison to the base steel. It is assumed that Mn and Mo increase hardenability by promoting the formation of bainitic sheaves (BS), i.e. by suppressing the formation of ferrite-pearlite and acicular ferrite (FP-AF). Cr at the level used in this work is not that effective. Presence and packet size of bainitic sheaves decrease the Charpy V-notch impact energy at 20 ℃ (CVN20) in comparison to ferrite-pearlite and acicular ferrite microstructures.