期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Novel medium entropy perovskite oxide Sr(FeCoNiMo)_(1/4)O_(3−δ)for zinc-air battery cathode
1
作者 Kaixin Li Juntao Gao +2 位作者 Xu Han Qi Shao Zhe Lü 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期669-678,共10页
It is widely recognized that the development of ZABs is impeded by the kinetic bottleneck of oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).The application of conformational entropy strategy to oxide... It is widely recognized that the development of ZABs is impeded by the kinetic bottleneck of oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).The application of conformational entropy strategy to oxides often involves introducing multiple elements with different properties,thereby providing outstanding bifunctional catalytic activity for OER/ORR.Nevertheless,the possible underlying catalytic pathways and potential interactions between various components are still poorly understood.This paper presents an excellent medium-entropy perovskite oxide,Sr(FeCoNiMo)_(1/4)O_(3−δ)(lower overpotential of 301 mV at 10 mA cm^(−2)).Zinc-air batteries employing it as a cathode catalyst demonstrate excellent round-trip efficiency(62%).By combining theoretical calculation with experiments,we aim to establish the link between the electronic structure of perovskite oxides with different elemental compositions and their OER mechanism.Research reveals that the conformational entropy strategy can simultaneously shift the O 2p-band center and metal d-band center of perovskite oxide towards the vicinity of the Fermi energy level,thereby triggering a more favorable lattice oxygen-participated mechanism(LOM)during the OER process.The outcomes of this work provide crucial insights into the role of conformational entropy strategies in oxygen catalysis and offer potential avenues for constructing efficient and stable electrocatalysts. 展开更多
关键词 Sr(FeCoNiMo)_(1/4)O_(3−δ) Bifunctional catalyst medium entropy LOM Rechargeable zinc-air batteries
下载PDF
Effect of WC grain size on mechanical properties and microstructures of cemented carbide with medium entropy alloy Co-Ni-Fe binder 被引量:5
2
作者 QIAN Cheng LI Kun +3 位作者 GUO Xue-yi LIU Bin LONG Zheng-yi LIU Yong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1146-1157,共12页
For developing new binder phase with high performance, Co-Ni-Fe alloy was used as binder in cemented carbides. The mechanical properties of WC-CoNiFe and WC-Co cemented carbides with different grain sizes were studied... For developing new binder phase with high performance, Co-Ni-Fe alloy was used as binder in cemented carbides. The mechanical properties of WC-CoNiFe and WC-Co cemented carbides with different grain sizes were studied. The results show that the reprecipitation of WC-CoNiFe is inhibited compared with that of WC-Co during sintering process, and the grains in WC-CoNiFe cemented carbides are more of smooth shape, resulting in a slightly lower hardness and higher transverse rupture strength. With the increase of the grain size, the hardness of the two cemented carbides decreases, and the transverse rupture strength increases. However, the slope values of K in Hall-Petch relationship are higher in WC-CoNiFe than those in WC-Co, indicating the high toughness of medium entropy alloy Co-Ni-Fe. 展开更多
关键词 cemented carbides mechanical properties dissolution-reprecipitation Hall-Petch relationship medium entropy alloy
下载PDF
TiC strengthened CoCrNi medium entropy alloy:Dissolution and precipitation of TiC and its effect on microstructure and performance 被引量:2
3
作者 Yong-gang TONG Yan-lin CAI +3 位作者 Yong-le HU Hong-feng HUANG Xian-cheng ZHANG Hao ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2266-2275,共10页
In order to improve the strength and corrosion resistance of CoCrNi medium entropy alloy,TiC strengthened CoCrNi medium entropy alloy(CoCrNi/(TiC)_(x)(x=0.1,0.2,0.4))was designed by addition of different amounts of Ti... In order to improve the strength and corrosion resistance of CoCrNi medium entropy alloy,TiC strengthened CoCrNi medium entropy alloy(CoCrNi/(TiC)_(x)(x=0.1,0.2,0.4))was designed by addition of different amounts of TiC.The effects of TiC content on the microstructure,mechanical properties,and corrosion resistance of the alloy were investigated.It was found that the precipitation morphologies of TiC changed from lamellar eutectic to needle structure with the increase of TiC content,and finally formed mixed needled and bulk TiC particles.TiC appears as a dissolution−precipitation phenomenon in the CoCrNi alloy,which is important for the mechanical properties and corrosion resistance of the CoCrNi/(TiC)_(x) alloy.The strength of alloy was enhanced obviously after the addition of TiC.The compressive yield strength of CoCrNi/(TiC)_(0.4) alloy reached 746 MPa,much larger than that of the CoCrNi medium entropy alloy,108 MPa.Additionally,the addition of TiC was found to improve the corrosion resistance of CoCrNi medium entropy alloy in the salt solution. 展开更多
关键词 medium entropy alloy TIC corrosion resistance MICROSTRUCTURE mechanical properties
下载PDF
Microstructure and Corrosion Resistance of a Novel AlNiLa Lightweight Medium Entropy Amorphous Alloy Composites
4
作者 ZHANG Shuyan ZHANG Zhibin +3 位作者 GAO Yangyang WANG Xin SHEN Baolong LIANG Xiubing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第6期1185-1191,共7页
A new type of lightweight AlNiLa medium entropy amorphous alloy composite ribbons(labled as MEAAC ribbons)were prepared by vacuum arc melting technology and high-speed single roller meltspinning method.The microstruct... A new type of lightweight AlNiLa medium entropy amorphous alloy composite ribbons(labled as MEAAC ribbons)were prepared by vacuum arc melting technology and high-speed single roller meltspinning method.The microstructure and thermal stability of MEAAC ribbons were examined using X-ray diffraction,differential scanning calorimeter,and scanning electron microscope.Meanwhile,the hardness and surface roughness of these ribbons were measured by Vickers microhardness tester and atomic force microscope.The potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS)were applied to investigate the corrosion behavior of these MEAAC ribbons in simulated seawater(3.5wt%NaCl corrosive solution)at room temperature.The results demonstrate that AlNiLa MEAAC ribbons in the as-received state are mainly composed of amorphous phase and intermetallic compounds.The hardness values of all melt-spun ribbons are above 310 HV_(0.1).With the increase of Al content,the linear polarization resistances of four various AlNiLa MEAAC ribbons are negligibly different numerically.It is also found that Al_(45)Ni_(27.5)La_(27.5) MEAAC ribbons have the most positive corrosion potential and the smallest corrosion current density at the same time;hence it may be a kind of potential material for metal surface protection in harsh ocean environment. 展开更多
关键词 medium entropy amorphous alloy composites rapid solidification MICROSTRUCTURE corrosion resistance thermal stability
下载PDF
Chemical short-range-order induced multiscale strengthening in refractory medium entropy alloys
5
作者 Weizheng Lu Yang Chen +2 位作者 Jia Li Peter K.Liaw Qihong Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第6期41-49,共9页
High/medium entropy alloys(H/MEAs)are generally possible to exhibit chemical short-range order(SRO).However,the complex role of SRO on mechanical properties from nano-scale to meso-scale is still challenging so far.He... High/medium entropy alloys(H/MEAs)are generally possible to exhibit chemical short-range order(SRO).However,the complex role of SRO on mechanical properties from nano-scale to meso-scale is still challenging so far.Here,we study the strengthening mechanism and deformation behavior in a model body-centered-cubic HfNbTa MEA by using atomic-scale molecular dynamics,micro-scale dislocation dynamics,and meso-scale crystal plasticity finite element.The SRO inhibits dislocation nucleation at the atomic scale,improving the flow stress.The SRO-induced ultrastrong local stress fluctuation greatly improves the micro-scale dislocation-based strength by the significant dislocation forest strengthening.Moreover,the Ta-rich locally ordered structure leads to an obvious heterogeneous strain and stress partitioning,which forms a strong strain gradient in the adjacent grain interiors and contributes to the strong back-stress-induced strain hardening. 展开更多
关键词 High/medium entropy alloys Multiscale strengthening Chemical short-range order
原文传递
Microbiologically Influenced Corrosion Behavior of Fe_(40)(CoCrMnNi)_(60) and Fe_(60)(CoCrMnNi)_(40) Medium Entropy Alloys in the Presence of Pseudomonas Aeruginosa 被引量:1
6
作者 Weiwei Chang Yangyang Li +7 位作者 Huaibei Zheng Hongchang Qian Dawei Guo Shuyuan Zhang Yuntian Lou Chi Tat Kwok Lap Mou Tam Dawei Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第3期379-390,共12页
In this work,the microbiologically influenced corrosion(MIC)of Fe_(40)(CoCrMnNi)_(60) and Fe_(60)(CoCrMnNi)_(40) medium entropy alloys(MEAs)induced by Pseudomonas aeruginosa(P.aeruginosa)was investigated.Corrosion beh... In this work,the microbiologically influenced corrosion(MIC)of Fe_(40)(CoCrMnNi)_(60) and Fe_(60)(CoCrMnNi)_(40) medium entropy alloys(MEAs)induced by Pseudomonas aeruginosa(P.aeruginosa)was investigated.Corrosion behaviors during 14 days of immersion in sterile and P.aeruginosa-inoculated culture media are presented.Under sterile conditions,both MEAs exhibited good corrosion resistance against the culture medium solution.In the presence of P.aeruginosa,the pitting corrosion of MEAs was promoted.The results of inductively coupled plasma‒mass spectrometry(ICP‒MS)and potentiodynamic polarization tests showed that the presence of P.aeruginosa promoted the selective dissolution of passive film and accelerated the corrosion of MEAs.The results of X-ray photoelectron spectroscopy(XPS)and Mott-Schottky measurements further demonstrated the degradation effect of P.aeruginosa on the passive film.Compared with Fe_(60)(CoCrMnNi)_(40),Fe_(40)(CoCrMnNi)_(60) manifested better resistance to the MIC caused by P.aeruginosa,which may be attributed to more Cr oxides and fewer Fe oxides of the passive film. 展开更多
关键词 Microbiologically influenced corrosion medium entropy alloys Pseudomonas aeruginosa
原文传递
Formation mechanism of hierarchical twins in the CoCrNi medium entropy alloy
7
作者 Dongpeng Hua Xiaorong Liu +5 位作者 Wan Wang Qing Zhou Qiaosheng Xia Shuo Li Junqin Shi Haifeng Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第9期19-32,共14页
The three-dimensional hierarchical twin network has been proved to be the source of the excellent strength-ductility combination in the CoCrNi medium entropy alloy.Revealing the formation mechanism of hierarchical twi... The three-dimensional hierarchical twin network has been proved to be the source of the excellent strength-ductility combination in the CoCrNi medium entropy alloy.Revealing the formation mechanism of hierarchical twins,however,remains a challenge using either the post-mortem or the in-situ microstructural characterization.In this study,the atomistic formation mechanism of hierarchical twins was investigated using molecular dynamics simulations,with special focus on the effects of strain rate and deformation temperature.Compared to the primary twin boundaries kink-driven hierarchical twinning tendency in pure FCC metals,the chemical inhomogeneity in CoCrNi can reduce the necessary kink height to trigger conjugate twins(CTWs),fascinating the formation of twin networks.At room temperature,the plastic deformation is dominated by primary twins(PTWs)and conjugate slips at a relatively lower strain rate(e.g.,5×10^(7)s^(−1)).The hierarchical twins can be activated in cases of deforming at a higher strain rate(e.g.,2×10^(8)s^(−1)).Further increasing the strain rate(e.g.,1×10^(10) s^(−1))leads to the phase-transformation induced plasticity.At cryogenic temperatures,the hierarchical twins are promoted within a large range of strain rates(e.g.,5×10^(7)–1×10^(10) s^(−1)).A higher temperature leads to the synergy of CTWs and primary slips at a lower strain rate,but hierarchical twins at a higher strain rate.On this basis,a qualitative comparison and scalable trends between experiments and simulations were revealed.The present study would not only provide the basic understanding for the twinning behavior found experimentally,but also contribute to the design of medium/high entropy alloys with excellent mechanical performances by tuning microstructures. 展开更多
关键词 Hierarchical twin medium entropy alloy Strain rate Deformation temperature Molecular dynamics simulation
原文传递
Dislocation me diate d dynamic tension-compression asymmetry of a Ni_(2)CoFeV_(0.5)Mo_(0.2) medium entropy alloy
8
作者 Ao Meng Xiang Chen +2 位作者 Yazhou Guo Yiping Lu Yonghao Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期204-218,共15页
Although tension-compression(T-C)asymmetry in yield strength was rarely documented in coarse-grained face centered cubic(FCC)metals as critical resolved shear stress(CRSS)for dislocation slip differs little between te... Although tension-compression(T-C)asymmetry in yield strength was rarely documented in coarse-grained face centered cubic(FCC)metals as critical resolved shear stress(CRSS)for dislocation slip differs little between tension and compression,the T-C asymmetry in strength,i.e.,higher strength when loaded in compression than in tension,was reported in some FCC high entropy alloys(HEAs)due to twinning and phase transitions activated at high strain regimes in compression.In this paper,we demonstrate a reversed and atypical tension-compression asymmetry(tensile strength markedly exceeds compressive strength)in a non-equiatomic FCC Ni_(2)CoFeV_(0.5)Mo_(0.2) medium entropy alloy(MEA)under dynamic loading,wherein dislocation slip governs dynamic deformation without twins or phase transitions.The asymme-try can be primarily interpreted as higher CRSS and more hard slip modes(lower average Schmid factor)activated in grains under dynamic tension than compression.Besides,larger strain rate sensitivity in dy-namic tension overwhelmingly contributes to the higher flow stress,thanks to the occurrence of more immobile Lomer-locks,narrower spacing of planar slip bands and higher dislocation density.This finding may provide some insights into designing MEAs/HEAs with desired properties under extreme conditions such as blast,impact and crash. 展开更多
关键词 medium entropy alloy Dynamic deformation Tension-compression asymmetry Slip trace analysis EBSD and TEM
原文传递
Chemical inhomogeneity inhibits grain boundary fracture:A comparative study in CrCoNi medium entropy alloy
9
作者 Fuhua Cao Yan Chen +1 位作者 Hai-Ying Wang Lan-Hong Dai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第22期228-241,共14页
Grain boundary(GB)fracture is arguably one of the most important reasons for the catastrophic failure of ductile polycrystalline materials.It is of interest to explore the role of chemical distribution on GB defor-mat... Grain boundary(GB)fracture is arguably one of the most important reasons for the catastrophic failure of ductile polycrystalline materials.It is of interest to explore the role of chemical distribution on GB defor-mation and fracture,as GB segregation becomes a key strategy for tailoring GB properties.Here we report that the inhomogeneous chemical distribution effectively inhibits GB fracture in a model CoCrNi medium entropy alloy compared to a so-called‘average-atom’sample.Atomic deformation kinematics combined with electronic behavior analysis reveals that the strong charge redistribution ability in chemical disor-dered CrCoNi GBs enhances shear deformation and thus prevents GB crack formation and propagation.Inspects on the GBs with different chemical components and chemical distributions suggest that not only disordered chemical distribution but also sufficient“harmonic elements”with large electronic flexibility contribute to improving the GB fracture resistance.This study provides new insight into the influence mechanism of GB chemistry on fracture behavior,and yields a systematic strategy and criterion,from the atoms and electrons level,forward in the design of high-performance materials with enhanced GB fracture resistance. 展开更多
关键词 FRACTURE Chemical inhomogeneity Grain boundary medium entropy alloy
原文传递
Thermal Deformation Behavior and Processing Map of a Novel CrFeNiSi_(0.15)Medium Entropy Alloy
10
作者 Hongbin Zhang Kang Chen +6 位作者 Zhongwei Wang Haiping Zhou Chengcheng Shi Shengxue Qin Jie Liu Tingjun Lv Jian Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第11期1870-1882,共13页
The thermal deformation behavior of a novel CrFeNiSi_(0.15)medium entropy alloy(MEA)was studied via isothermal compression experiments,with the processing parameter range of 900–1200℃and 0.001–1 s^(−1).According to... The thermal deformation behavior of a novel CrFeNiSi_(0.15)medium entropy alloy(MEA)was studied via isothermal compression experiments,with the processing parameter range of 900–1200℃and 0.001–1 s^(−1).According to experimental data,the modified constitutive equation had been obtained,which precisely predicted the flow behavior of CrFeNiSi_(0.15)MEA during thermal deformation.At the same time,the processing map was established on the basis of the dynamic material model(DMM)theory.According to the map,the optimal processing parameters were determined at 1130–1200℃/0.06–1 s−1,under which the power dissipation efficiency could reach above 34%.The peak efficiency was above 38%,which occurred at 1200℃/1 s^(−1).In such parameter,complete dynamic recrystallization(DRX)also occurred.The flow instability of CrFeNiSi_(0.15)MEA was estimated to occur at 900–985℃/0.12–1 s^(−1),which was shown as grain boundaries cracking.Furthermore,both the continuous DRX(CDRX)and discontinuous DRX(DDRX)occurred simultaneously during thermal deformation.Meanwhile,some twins were also newly formed during DRX process,most of which were primary twins.The occurrence of twinning was beneficial to promote the development of DRX behavior. 展开更多
关键词 medium entropy alloys Thermal deformation behavior Constitutive model Processing maps
原文传递
Combinatorial development of antibacterial FeCoCr-Ag medium entropy alloy
11
作者 Jiashu Cao Xin Jiang +9 位作者 Qinghua Zhang Fusen Yuan Jihao Yu Fan Yang Mingxing Li Chao Wang Ying Lu Ming Li Weihua Wang Yanhui Liu 《Materials Futures》 2023年第2期134-141,共8页
Antibacterial activity and mechanical properties of FeCoCr-Ag medium entropy alloys were studied via combinatorial fabrication paired with high-throughput characterizations.It was found that the antibacterial activity... Antibacterial activity and mechanical properties of FeCoCr-Ag medium entropy alloys were studied via combinatorial fabrication paired with high-throughput characterizations.It was found that the antibacterial activity and mechanical properties exhibit non-linear dependence on the content of Ag addition.Within the studied alloys,(FeCoCr)_(80)Ag_(20) possesses an optimized combination of different properties for potential applications as antibacterial coating materials.The underlying mechanism is ascribed to the formation of a dual-phase structure that leads to competition between the role of Ag phase and FeCoCr phase at different Ag content.The results not only demonstrate the power and effectiveness of combinatorial methods in multi-parameter optimization but also indicate the potential of high entropy alloys as antibacterial materials. 展开更多
关键词 antibacterial metals and alloys medium entropy alloy combinatorial method
原文传递
Refined microstructure and enhanced mechanical properties of AlCrFe_(2)Ni_(2) medium entropy alloy produced via laser remelting 被引量:7
12
作者 Tianyi Han Yong Liu +4 位作者 Mingqing Liao Danni Yang Nan Qu Zhonghong Lai Jingchuan Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第4期18-27,共10页
A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properti... A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properties was investigated by characterizing the as-cast and the remelted AlCrAlCrFe_(2)Ni_(2)alloy.The laser remelting process resulted in a significant decrease of grain size from about 780μm to 58.89μm(longitudinal section)and 15.87μm(transverse section)and an increase of hardness from 4.72±0.293 GPa to 6.40±0.147 GPa(longitudinal section)and 7.55±0.360 GPa(transverse section).It was also found that the long side plate-like microstructure composed of FCC phase,ordered B2 phase and disordered BCC phase in the as-cast alloy was transformed into nano-size weave-like microstructure consisting of alternating ordered B2 and disordered BCC phases.The mechanical properties were evaluated by the derived stressstrain relationship obtained from nano-indentation tests data.The results showed that the yield stress increased from 661.9 MPa to 1347.6 MPa(longitudinal section)and 1647.2 MPa(transverse section)after remelting.The individual contribution of four potential strengthening mechanisms to the yield strength of the remelted alloy was quantitatively evaluated,including grain boundary strengthening,dislocation strengthening,solid solution strengthening and precipitation strengthening.The calculation results indicated that dislocation and precipitation are dominant strengthening mechanisms in the laser remelted MEA. 展开更多
关键词 medium entropy alloy Laser remelting MICROSTRUCTURE Nano-indentation Strengthening mechanism
原文传递
Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys:Experiments and first-principle calculations 被引量:6
13
作者 Ruobin Chang Wei Fang +6 位作者 Jiaohui Yan Haoyang Yu Xi Bai Jia Li Shiying Wang Shijian Zheng Fuxing Yin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第3期25-33,共9页
The effect of Mo additions on the microstructures and mechanical properties of CoCrNi alloys was investigated,meanwhile,ab initio calculations are performed to quantitatively evaluate the lattice distortion and stacki... The effect of Mo additions on the microstructures and mechanical properties of CoCrNi alloys was investigated,meanwhile,ab initio calculations are performed to quantitatively evaluate the lattice distortion and stacking fault energy(SFE).The yield strength,ultimate tensile strength,and elongation of(CoCrNi)_(97)Mo_(3)alloy are 475 MPa,983 MPa and 69%,respectively.The yield strength is increased by~30%and high ductility is maintained,in comparison with CoCrNi alloy.Besides the nano-twins and dislocations,the higher density of stacking faults is induced during the tensile deformation for(CoCrNi)_(97)Mo_(3)alloy.Ab initio calculation results indicate the mean square atomic displacement(MSAD)and SFE value of(CoCrNi)_(97)Mo_(3)alloy is 42.6 pm^(2)and-40.4 mJ/m^(2)at 0 K,respectively.The relationship between mechanical properties and MSAD,SFE for various multiple principal element alloys is discussed. 展开更多
关键词 medium entropy alloys Severe lattice distortion Stacking fault energy Single phase Mechanical properties Ab initio calculations High entropy alloys
原文传递
Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy 被引量:6
14
作者 Yujie Chen Yan Fang +4 位作者 Xiaoqian Fu Yiping Lu Sijing Chen Hongbin Bei Qian Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第14期101-107,共7页
Solid solution strengthening is one of the most conventional strategies for optimizing alloys strength,while the corresponding mechanisms can be more complicated than we traditionally thought specifically as heterogen... Solid solution strengthening is one of the most conventional strategies for optimizing alloys strength,while the corresponding mechanisms can be more complicated than we traditionally thought specifically as heterogeneity of microstructure is involved.In this work,by comparing the change of chemical distribution,dislocation behaviors and mechanical properties after doping equivalent amount of tungsten(W)atoms in CrCoNi alloy and pure Ni,respectively,it is found that the alloying element W in CrCoNi alloy resulted in much stronger strengthening effect due to the significant increase of heterogeneity in chemical distribution after doping trace amount of W.The large atomic scale concentration fluctuation of all elements in CrCoNi-3W causes dislocation motion via strong nanoscale segment detrapping and severe dislocation pile up which is not the case in Ni-3W.The results revealed the high sensitivity of elements distribution in multi-principle element alloys to composition and the significant consequent influence in tuning the mechanical properties,giving insight for complex alloy design. 展开更多
关键词 medium entropy alloy Chemical distribution heterogeneity Alloying effect Solid solution strengthening mechanism In situ observation
原文传递
Preparation of high-mechanical-property medium-entropy CrCoNi alloy by asymmetric cryorolling 被引量:3
15
作者 Yu-ze WU Zhao-yang ZHANG +5 位作者 Juan LIU Charlie KONG Yu WANG Puneet TANDON Alexander PESIN Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1559-1574,共16页
In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were... In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were conducted.The results showed that the asymmetric-cryorolled alloy achieved a high strength of over 1.6 GPa.After annealing at 1073 K,it retained a high strength of~1 GPa while the elongation reached nearly 60%.After annealing,the heterogeneous characteristics were formed in asymmetric-cryorolled samples,which were found to be more distinct than those of the samples subjected to asymmetric rolling.This resulted in the generation of high strength and ductility. 展开更多
关键词 medium entropy alloy heterogeneous structure ANNEALING mechanical properties asymmetric cryorolling
下载PDF
Dynamic deformation behavior of a FeCrNi medium entropy alloy 被引量:3
16
作者 Ao Fu Bin Liu +3 位作者 Zezhou Li Bingfeng Wang Yuankui Cao Yong Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第5期120-128,共9页
Deformation behavior of a FeCrNi medium entropy alloy(MEA)prepared by powder metallurgy(P/M)method was investigated over a wide range of strain rates.The FeCrNi MEA exhibits high strain-hardening ability,which can be ... Deformation behavior of a FeCrNi medium entropy alloy(MEA)prepared by powder metallurgy(P/M)method was investigated over a wide range of strain rates.The FeCrNi MEA exhibits high strain-hardening ability,which can be attributed to the multiple deformation mechanisms,including dislocation slip,deformation induced stacking fault and mechanical twinning.The shear localization behavior of the FeCrNi MEA was also analyzed by dynamically loading hat-shaped specimens,and the distinct adiabatic shear band cannot be observed until the shear strain reaches~14.5.The microstructures within and outside the shear band exhibit different characteristics:the grains near the shear band are severely elongated and significantly refined by dislocation slip and twinning;inside the shear band,the initial coarse grains completely disappear,and transform into recrystallized ultrafine equiaxed grains by the classical rotational dynamic recrystallization mechanism.Moreover,microvoids preferentially nucleate in the central areas of the shear band where the temperature is very high and the shear stress is highly concentrated.These microvoids will coalesce into microcracks with the increase of strain,which eventually leads to the fracture of the shear band. 展开更多
关键词 medium entropy alloys Mechanical response Dynamic shear properties Grain refinement Adiabatic shear band
原文传递
High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy 被引量:2
17
作者 Jia Li Baobin Xie +3 位作者 Qihong Fang Bin Liu Yong Liu Peter K.Liawc 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第9期70-75,共6页
In medium/high entropy alloys, their mechanical properties are strongly dependent on the chemicalelemental composition. Thus, searching for optimum elemental composition remains a critical issue to maximize the mechan... In medium/high entropy alloys, their mechanical properties are strongly dependent on the chemicalelemental composition. Thus, searching for optimum elemental composition remains a critical issue to maximize the mechanical performance. However, this issue solved by traditional optimization process via "trial and error" or experiences of domain experts is extremely difficult. Here we propose an approach based on high-throughput simulation combined machine learning to obtain medium entropy alloys with high strength and low cost. This method not only obtains a large amount of data quickly and accurately,but also helps us to determine the relationship between the composition and mechanical properties.The results reveal a vital importance of high-throughput simulation combined machine learning to find best mechanical properties in a wide range of elemental compositions for development of alloys with expected performance. 展开更多
关键词 medium entropy alloy Optimum elemental composition High-throughput simulation Machine learning
原文传递
A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure 被引量:1
18
作者 P.-C.Zhao B.Guan +4 位作者 Y.-G.Tong R.-Z.Wang X.Li X.-C.Zhang S.-T.Tu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第14期54-63,共10页
The thermal stability and mechanical properties of a gradient-nanograined structure(GNS)CoCrNi medium entropy alloy(MEA)processed by ultrasonic surface rolling were studied by using isothermal/isochronal annealing tes... The thermal stability and mechanical properties of a gradient-nanograined structure(GNS)CoCrNi medium entropy alloy(MEA)processed by ultrasonic surface rolling were studied by using isothermal/isochronal annealing tests combined with quasi-in-situ electron backscatter diffraction(EBSD)characterization and Vickers micro-hardness(HV)measurements.A layer by layer high-throughput investigation method was used to quantitatively study the grain growth kinetics and grain boundary evolution with different initial grain sizes,which could effectively save specimen and time costs.The grain nucleation and growth,as well as shrink and disappearance process throughΣ3 coincidence site lattice boundary migration with slightly lattice rotation during annealing were directly revealed.The layer by layer grain growth kinetics and calculated activation energy indicate that the thermal stability of nanograined top surface layer is relatively higher than that of nano-twined subsurface layer for the gradient CoCrNi MEA processed by ultrasonic surface rolling.Further analysis show that the grain boundary relaxation and dynamic recrystallization of the topmost nano-grains led to the decrease of grain boundary energy,thus improving their thermal stability.The present work provided theoretical basis for the application of CoCrNi MEA at high temperatures.Moreover,the high-throughput method on the investigation of grain stability by using gradient structure can be easily extended to other materials and it is of great significance for understanding the microstructural evolution of gradient materials. 展开更多
关键词 medium entropy alloy Grain growth Gradient materials Nanostructured materials Annealing High throughput
原文传递
Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy 被引量:1
19
作者 Jia Li Li Li +4 位作者 Chao Jiang Qihong Fang Feng Liu Yong Liu Peter K.Liaw 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期85-91,共7页
The gradient nanostructured medium entropy alloys(MEAs) exhibit a good yielding strength and great plasticity. Here, the mechanical properties, microstructure, and strain gradient in the gradient nanostructured MEA Cr... The gradient nanostructured medium entropy alloys(MEAs) exhibit a good yielding strength and great plasticity. Here, the mechanical properties, microstructure, and strain gradient in the gradient nanostructured MEA CrCoNi are studied by atomic simulations. The strong gradient stress and strain always occur in the deformed gradient nanograined MEA CrCoNi. The origin of improving strength is attributed to the formation of the 9 R phase, deformation twinning, as well as the fcc to hcp phase transformation, which prevent strain localization. A microstructure-based predictive model reveals that the lattice distortion dependent solid-solution strengthening and grain-boundary strengthening dominate the yield strength,and the dislocation strengthening governs the strain hardening. The present result provides a fundamental understanding of the gradient nanograined structure and plastic deformation in the gradient nanograined MEA, which gives insights for the design of MEAs with higher strengths. 展开更多
关键词 medium entropy alloy Gradient nanograined structure Atomic simulation Strengthening Deformation 9R phase Deformation twinning Phase transformation
原文传递
Dynamically compressive behaviors and plastic mechanisms of a CrCoNi medium entropy alloy at various temperatures 被引量:1
20
作者 Kun Jiang Jianguo Li +3 位作者 Bin Gan Tian Ye Lianyang Chen Tao Suo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第5期88-96,I0002,共10页
As an attractive class of metallic materials,single-phase CrCoNi medium-entropy alloy(MEA)has drawn much attention recently regarding their deformation behaviors,but the dynamically mechanical responses of this alloy ... As an attractive class of metallic materials,single-phase CrCoNi medium-entropy alloy(MEA)has drawn much attention recently regarding their deformation behaviors,but the dynamically mechanical responses of this alloy at high strain rates remain less studied,especially coupled with extremely low temperatures.In this study,the dynamic deformation behaviors of this CrCoNi MEA were systematically investigated at room temperature(RT)of 298 K and liquid nitrogen temperature(LNT)of 77 K using the split Hopkinson pressure bar(SHPB).This alloy exhibited a combination of higher yield strength and stronger hardening rate upon dynamic compressive deformation when the loading conditions become much harsher(higher strain rate or lower temperature).Detailed microstructure analyses indicated that the strong strain hardening ability during dynamic deformation was mainly attributed to the continuous formation of nanoscale deformation twins.Furthermore,as loaded at LNT,multi-directional deformation twins were activated.Meanwhile,due to the interaction between Shockley partial dislocations and twin boundaries,large-sized deformation-induced FCC-HCP phase transformations at a micrometer scale were also observed within the grains,which not only accommodated the plasticity but also played an important role in improving the hardening capability owing to the appearance of newly generated interfaces. 展开更多
关键词 medium entropy alloys Extreme loading Dynamically compressive deformation NANOTWINS Phase transformation
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部