The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid...The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid flows has been carried out through computational analysis. A mathematical framework employing governing differential equations that are partial has been implemented to produce an ensemble of ordinary differential equations, which happen to be nonlinear that incorporate nanofluid flows by utilizing acceptable transformations. Through the combination of the Nachtsheim-Swigert shooting method and the Runge-Kutta method, the group of resulting non-dimensionalized equations is solved computationally. In a few special, confined cases, the corresponding numeric output is thereafter satisfactorily matched with the existing available research. The consequences of heat generation regarding local skin friction coefficient and rate of heat in conjunction with mass transfer have been investigated, evaluated, and reported on the basis of multiple nanofluid flows.展开更多
The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vege...The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.展开更多
文摘The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid flows has been carried out through computational analysis. A mathematical framework employing governing differential equations that are partial has been implemented to produce an ensemble of ordinary differential equations, which happen to be nonlinear that incorporate nanofluid flows by utilizing acceptable transformations. Through the combination of the Nachtsheim-Swigert shooting method and the Runge-Kutta method, the group of resulting non-dimensionalized equations is solved computationally. In a few special, confined cases, the corresponding numeric output is thereafter satisfactorily matched with the existing available research. The consequences of heat generation regarding local skin friction coefficient and rate of heat in conjunction with mass transfer have been investigated, evaluated, and reported on the basis of multiple nanofluid flows.
基金This work was financially supported by the National Natural Science Foundation of China (No. 10402033) and the Key Lab. Foun-dation of the Ministry of Education of China (No.04JS19).
文摘The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.