Three kinds of high-alumina repairing mixes for medium-frequency induction furnace were prepared by ramming method with sodium silicate, phosphoric acid and aluminium dihydrogen phosphate as binder, respectively. Phys...Three kinds of high-alumina repairing mixes for medium-frequency induction furnace were prepared by ramming method with sodium silicate, phosphoric acid and aluminium dihydrogen phosphate as binder, respectively. Physical properties of the specimens heat treated at different temperatures were tested and compared. The results show that the specimen bonded by sodium silicate behaves much higher strength after fired at 1 600 ℃ compared with the specimen, bonded by phosphoric acid or aluminium dihydrogen phosphate. Due to more liquid phase formation the properties of specimen bonded by sodium silicate are poor with a low strength and a large volume shrinkage at high temperatures. Meanwhile. the speeimen bonded by phosphoric acid and aluminium dihydrogen phosphate, respectively, show relatively high strengths and slight volume expansions at high temperatures because of in-situ mullite formation.展开更多
A mathematical model for describing the melting process in the medium-frequency induction furnace was developed.Finite difference method was applied to deal with coupling electromagnetic field and temperature field in...A mathematical model for describing the melting process in the medium-frequency induction furnace was developed.Finite difference method was applied to deal with coupling electromagnetic field and temperature field in the melting process.The magnetic induction,temperature distribution and the phase interface moving characteristic during melting of the furnace burden were calculated.The effects of the direct current and inductive heating frequency on the process were analyzed.The simulation results show that:In the direction of burden radius,magnetic induction decreases from the outside of the burden to the center.Solid/liquid interface moves gradually from the outside of the burden to the center.The movement speed increases when the burden begins to melt.In the direction of the burden height,the distribution of eddy current in the surface is accord with the edge effect of the coil.Solid/liquid interface moves gradually from the center to the two sides.The direct current has a greater effect on the electromagnetic field and temperature field than frequency.展开更多
Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composit...Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.展开更多
In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with ...In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.展开更多
Based on a numerical analysis of the alternating electromagnetic field in the process of Steel refining with an induction ladle furnace (ILF), the optimization of the structure of ILF and the electromagnetic field for...Based on a numerical analysis of the alternating electromagnetic field in the process of Steel refining with an induction ladle furnace (ILF), the optimization of the structure of ILF and the electromagnetic field for melting is realized in the present work. The optimization of the ILF by outward extension of inner yokes can decrease the magnitic flux leakage obviously, reduce the eddy current energy loss dramatically and then, decrease the total power consumption.展开更多
A system-level evaluation was used to analyze the induction furnace operation and process system in this study. This paper presents an investigation into the relationship between the instantaneous chemical composition...A system-level evaluation was used to analyze the induction furnace operation and process system in this study. This paper presents an investigation into the relationship between the instantaneous chemical composition of a molten bath and its energy consumption in steelmaking. This was evaluated using numerical modelling to solve for the estimated melting time prediction for the induction furnace operation. This work provides an insight into the lowering of energy consumption and estimated production time in steelmaking using material charge balancing approach. Enthalpy computation was implemented to develop an energy consumption model for the molten metal using a specific charge composition approach. Computational simulation program engine (CastMELT) was also developed in Java programming language with a MySQL database server for seamless specific charge composition analysis and testing. The model performance was established using real-time production data from a cast iron-based foundry with a 1 and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. Using parameter fitting techniques on the measured operational data of the induction furnaces at different periods of melting, the results from the model predictions and real-time melting showed good correlation between 81% - 95%. A further analysis that compared the relationship between the mass composition of a current molten bath and melting, time showed that energy consumption can be reduced with effective material balancing and controlled charge. Melting time was obtained as a function of the elemental charge composition of the molten bath in relation to the overall scrap material charge. This validates the approach taken by this research using material charge and thermodynamic of melting to optimize and better control melting operation in foundry and reduce traditional waste during iron and steel making.展开更多
The recent rapid developments in the automobile industry have demanded the extensive use of gaivannealed (GA) steel sheets.In particular,the development of lightweight automobiles is putting increasingly higher requ...The recent rapid developments in the automobile industry have demanded the extensive use of gaivannealed (GA) steel sheets.In particular,the development of lightweight automobiles is putting increasingly higher requirements on the strength of GA steel sheets.The galvanneal furnace,which is used for processing galvannealed steel sheets,is typically composed of the induction heating section,holding section and fog cooling section.This paper described the structural characteristics of each component of the galvanneal furnace,and analyzed temperature control methods of the galvanneal furnace that are important for the successful production of high-strength GA steel sheets for automotive applications.展开更多
文摘Three kinds of high-alumina repairing mixes for medium-frequency induction furnace were prepared by ramming method with sodium silicate, phosphoric acid and aluminium dihydrogen phosphate as binder, respectively. Physical properties of the specimens heat treated at different temperatures were tested and compared. The results show that the specimen bonded by sodium silicate behaves much higher strength after fired at 1 600 ℃ compared with the specimen, bonded by phosphoric acid or aluminium dihydrogen phosphate. Due to more liquid phase formation the properties of specimen bonded by sodium silicate are poor with a low strength and a large volume shrinkage at high temperatures. Meanwhile. the speeimen bonded by phosphoric acid and aluminium dihydrogen phosphate, respectively, show relatively high strengths and slight volume expansions at high temperatures because of in-situ mullite formation.
基金Item Sponsored by Program for New Century Excellent Talents in University(NCET-09-0396)State Major Science and Technology Special Project Foundation for High-End Numerical Machine and Basic Manufacturing Equipment(2011ZX04014-052,2012ZX04012-011)
文摘A mathematical model for describing the melting process in the medium-frequency induction furnace was developed.Finite difference method was applied to deal with coupling electromagnetic field and temperature field in the melting process.The magnetic induction,temperature distribution and the phase interface moving characteristic during melting of the furnace burden were calculated.The effects of the direct current and inductive heating frequency on the process were analyzed.The simulation results show that:In the direction of burden radius,magnetic induction decreases from the outside of the burden to the center.Solid/liquid interface moves gradually from the outside of the burden to the center.The movement speed increases when the burden begins to melt.In the direction of the burden height,the distribution of eddy current in the surface is accord with the edge effect of the coil.Solid/liquid interface moves gradually from the center to the two sides.The direct current has a greater effect on the electromagnetic field and temperature field than frequency.
基金the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.
基金Project(50876116) supported by the National Natural Science Foundation of ChinaProject(2007CK3077) supported by Innovative Program of Hunan Science and Technology AgencyProject(1343-77225) supported by the Graduate School of Central South University
文摘In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.
文摘Based on a numerical analysis of the alternating electromagnetic field in the process of Steel refining with an induction ladle furnace (ILF), the optimization of the structure of ILF and the electromagnetic field for melting is realized in the present work. The optimization of the ILF by outward extension of inner yokes can decrease the magnitic flux leakage obviously, reduce the eddy current energy loss dramatically and then, decrease the total power consumption.
文摘A system-level evaluation was used to analyze the induction furnace operation and process system in this study. This paper presents an investigation into the relationship between the instantaneous chemical composition of a molten bath and its energy consumption in steelmaking. This was evaluated using numerical modelling to solve for the estimated melting time prediction for the induction furnace operation. This work provides an insight into the lowering of energy consumption and estimated production time in steelmaking using material charge balancing approach. Enthalpy computation was implemented to develop an energy consumption model for the molten metal using a specific charge composition approach. Computational simulation program engine (CastMELT) was also developed in Java programming language with a MySQL database server for seamless specific charge composition analysis and testing. The model performance was established using real-time production data from a cast iron-based foundry with a 1 and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. Using parameter fitting techniques on the measured operational data of the induction furnaces at different periods of melting, the results from the model predictions and real-time melting showed good correlation between 81% - 95%. A further analysis that compared the relationship between the mass composition of a current molten bath and melting, time showed that energy consumption can be reduced with effective material balancing and controlled charge. Melting time was obtained as a function of the elemental charge composition of the molten bath in relation to the overall scrap material charge. This validates the approach taken by this research using material charge and thermodynamic of melting to optimize and better control melting operation in foundry and reduce traditional waste during iron and steel making.
文摘The recent rapid developments in the automobile industry have demanded the extensive use of gaivannealed (GA) steel sheets.In particular,the development of lightweight automobiles is putting increasingly higher requirements on the strength of GA steel sheets.The galvanneal furnace,which is used for processing galvannealed steel sheets,is typically composed of the induction heating section,holding section and fog cooling section.This paper described the structural characteristics of each component of the galvanneal furnace,and analyzed temperature control methods of the galvanneal furnace that are important for the successful production of high-strength GA steel sheets for automotive applications.