In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access ...In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.展开更多
Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research ...Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others.展开更多
This paper describes an application of combined model of extrapolation and correlation techniques for short term load forecasting of an Indian substation. Here effort has been given to improvise the accuracy of elec-t...This paper describes an application of combined model of extrapolation and correlation techniques for short term load forecasting of an Indian substation. Here effort has been given to improvise the accuracy of elec-trical load forecasting considering the factors, past data of the load, respective weather condition and finan-cial growth of the people. These factors are derived by curve fitting technique. Then simulation has been conducted using MATLAB tools. Here it has been suggested that consideration of 20 years data for a devel-oping country should be ignored as the development of a country is highly unpredictable. However, the im-portance of the past data should not be ignored. Here, just previous five years data are used to determine the above factors.展开更多
We propose a model based on the optimal weighted combinational forecasting with constant terms, give formulae of the weights and the average errors as well as a relation of the model and the corresponding model withou...We propose a model based on the optimal weighted combinational forecasting with constant terms, give formulae of the weights and the average errors as well as a relation of the model and the corresponding model without constant terms, and compare these models. Finally an example was given, which showed that the fitting precision has been enhanced.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern...Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future.展开更多
Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like Ch...Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, according to China’s 11th Five-Year Plan (2006-2010). In this paper, LTLF with an economic factor, GDP, is implemented. A support vector regression (SVR) is applied as the training algorithm to obtain the nonlinear relationship between load and the economic factor GDP to improve the accuracy of forecasting.展开更多
Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose ...Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required.展开更多
Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. ...Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. This simulation study considered the performances of the classical VAR and Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error terms. The results from 10,000 iteration revealed that the BVAR models are excellent for time series length of T=8 for all levels of collinearity while the classical VAR is effective for time series length of T=16 for all collinearity levels except when ρ = -0.9 and ρ = -0.95. We therefore recommended that for effective short term forecasting, the time series length, forecasting horizon and the collinearity level should be considered.展开更多
Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand ...Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand is increased with high growth rate. In this paper, a short-term load forecasting realized by a generalized neuron–wavelet method is proposed. The proposed method consists of wavelet transform and soft computing technique. The wavelet transform splits up load time series into coarse and detail components to be the features for soft computing techniques using Generalized Neurons Network (GNN). The soft computing techniques forecast each component separately. The modified GNN performs better than the traditional GNN. At the end all forecasted components is summed up to produce final forecasting load.展开更多
This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid ...This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model.展开更多
In this article, we are initiating the hypothesis that improvements in short term energy load forecasting may rely on inclusion of data from new information sources generated outside the power grid and weather related...In this article, we are initiating the hypothesis that improvements in short term energy load forecasting may rely on inclusion of data from new information sources generated outside the power grid and weather related systems. Other relevant domains of data include scheduled activities on a grid, large events and conventions in the area, equipment duty cycle schedule, data from call centers, real-time traffic, Facebook, Twitter, and other social networks feeds, and variety of city or region websites. All these distributed data sources pose information collection, integration and analysis challenges. Our approach is concentrated on complex non-cyclic events detection where detected events have a human crowd magnitude that is influencing power requirements. The proposed methodology deals with computation, transformation, modeling, and patterns detection over large volumes of partially ordered, internet based streaming multimedia signals or text messages. We are claiming that traditional approaches can be complemented and enhanced by new streaming data inclusion and analyses, where complex event detection combined with Webbased technologies improves short term load forecasting. Some preliminary experimental results, using Gowalla social network dataset, confirmed our hypothesis as a proof-of-concept, and they paved the way for further improvements by giving new dimensions of short term load forecasting process in a smart grid.展开更多
The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity ex...The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e...The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory.展开更多
By analysis of historical data of the ionosphere, it is suggested to apply grey theory to ionospheric short-term forecasting, grey range information entropy is defined to determine the optimum grey length of the sampl...By analysis of historical data of the ionosphere, it is suggested to apply grey theory to ionospheric short-term forecasting, grey range information entropy is defined to determine the optimum grey length of the sample sequence, the prediction model based on residual error is constructed, and the observation data of multiple ionospheric observation stations in China are adopted for test. The prediction result indicates that the average grey range information entropy calculation results reflect the cyclical effects of solar rotation, precision of the forecasting method in high latitudes is higher than low latitudes, and its error is large relatively in more intense solar activity season, the effect of forecasting 1 day in advance of average relative residuals are less than 1 MHz, the average precision is more than 90%. It provides a new way of thinking for the ionospheric foF2 short-term forecast in the future.展开更多
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu...This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.展开更多
An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis ...An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.展开更多
In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to cont...In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.展开更多
文摘In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.
文摘Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others.
文摘This paper describes an application of combined model of extrapolation and correlation techniques for short term load forecasting of an Indian substation. Here effort has been given to improvise the accuracy of elec-trical load forecasting considering the factors, past data of the load, respective weather condition and finan-cial growth of the people. These factors are derived by curve fitting technique. Then simulation has been conducted using MATLAB tools. Here it has been suggested that consideration of 20 years data for a devel-oping country should be ignored as the development of a country is highly unpredictable. However, the im-portance of the past data should not be ignored. Here, just previous five years data are used to determine the above factors.
基金Supported by the Natural Science Foundation of Henan Province(994053200)
文摘We propose a model based on the optimal weighted combinational forecasting with constant terms, give formulae of the weights and the average errors as well as a relation of the model and the corresponding model without constant terms, and compare these models. Finally an example was given, which showed that the fitting precision has been enhanced.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2007AA11Z221), International Cooperation Project of Shanghai (08210707500), and Natural Science Foundation of Shanghai.(08ZR1420600) . _
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.
文摘Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future.
文摘Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, according to China’s 11th Five-Year Plan (2006-2010). In this paper, LTLF with an economic factor, GDP, is implemented. A support vector regression (SVR) is applied as the training algorithm to obtain the nonlinear relationship between load and the economic factor GDP to improve the accuracy of forecasting.
文摘Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required.
文摘Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. This simulation study considered the performances of the classical VAR and Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error terms. The results from 10,000 iteration revealed that the BVAR models are excellent for time series length of T=8 for all levels of collinearity while the classical VAR is effective for time series length of T=16 for all collinearity levels except when ρ = -0.9 and ρ = -0.95. We therefore recommended that for effective short term forecasting, the time series length, forecasting horizon and the collinearity level should be considered.
文摘Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand is increased with high growth rate. In this paper, a short-term load forecasting realized by a generalized neuron–wavelet method is proposed. The proposed method consists of wavelet transform and soft computing technique. The wavelet transform splits up load time series into coarse and detail components to be the features for soft computing techniques using Generalized Neurons Network (GNN). The soft computing techniques forecast each component separately. The modified GNN performs better than the traditional GNN. At the end all forecasted components is summed up to produce final forecasting load.
文摘This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model.
文摘In this article, we are initiating the hypothesis that improvements in short term energy load forecasting may rely on inclusion of data from new information sources generated outside the power grid and weather related systems. Other relevant domains of data include scheduled activities on a grid, large events and conventions in the area, equipment duty cycle schedule, data from call centers, real-time traffic, Facebook, Twitter, and other social networks feeds, and variety of city or region websites. All these distributed data sources pose information collection, integration and analysis challenges. Our approach is concentrated on complex non-cyclic events detection where detected events have a human crowd magnitude that is influencing power requirements. The proposed methodology deals with computation, transformation, modeling, and patterns detection over large volumes of partially ordered, internet based streaming multimedia signals or text messages. We are claiming that traditional approaches can be complemented and enhanced by new streaming data inclusion and analyses, where complex event detection combined with Webbased technologies improves short term load forecasting. Some preliminary experimental results, using Gowalla social network dataset, confirmed our hypothesis as a proof-of-concept, and they paved the way for further improvements by giving new dimensions of short term load forecasting process in a smart grid.
文摘The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
文摘The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory.
文摘By analysis of historical data of the ionosphere, it is suggested to apply grey theory to ionospheric short-term forecasting, grey range information entropy is defined to determine the optimum grey length of the sample sequence, the prediction model based on residual error is constructed, and the observation data of multiple ionospheric observation stations in China are adopted for test. The prediction result indicates that the average grey range information entropy calculation results reflect the cyclical effects of solar rotation, precision of the forecasting method in high latitudes is higher than low latitudes, and its error is large relatively in more intense solar activity season, the effect of forecasting 1 day in advance of average relative residuals are less than 1 MHz, the average precision is more than 90%. It provides a new way of thinking for the ionospheric foF2 short-term forecast in the future.
文摘This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.
文摘An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.
文摘In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.