In intensity modulated radiation treatment (IMRT) planning, the use of asymmetrically collimated fields that are placed on central axis or its off-set is mostly required. Output is the main topic discussed today for e...In intensity modulated radiation treatment (IMRT) planning, the use of asymmetrically collimated fields that are placed on central axis or its off-set is mostly required. Output is the main topic discussed today for extremely small and/or severe irregularly shaped fields. The air scatter data are involved directly or indirectly in obtaining the output. Despite the fact that extensive data have been published in many studies to provide a guide on the magnitude of output factor for clinical accelerators, there are very few data reviewed about output factor in-air or phantom for off-set fields. This study was aimed to investigate the impact of these conditions for small fields. This study was conducted in Elekta Synergy linear accelerator which produces 6 MV X-ray energy. The in-air output factor (Sc) has been measured by CC04 ion chamber with brass-alloy “build-up” cap and Dose-1 electrometer, and the total output (Scp) measurements were carried on at dose maximum depth in phantom by the same chamber and Thermoluminescence dosimeter (TLD) for 1 - 10 cm2 fields. The all measurements at center of isocenter and off-set fields at three directions (X2, Y1, Diagonal) were done. By decreasing field size from 10 to 2 cm2 at isocenter, the Sc value using CC04 was decreased to 5.4% and Scp using CC04 and TLD to 14.5% and 11% respectively. By increasing off-set value, the Sc and Scp values were increased in all directions comparing to central fields. The maximum increase was obtained in Y1 direction for Sc and Scp. TLD results for Scp is slightly higher than CC04. The dosimetric properties of small fields and their off-set should be evaluated and modelled appropriately in the treatment planning system to ensure accurate dose calculation in Intensity Modulated Radiation Treatment.展开更多
This study aimed to determine variations in tomotherapy beam outputs at multiple institutions. Measurements were obtained at 22 radiotherapy institutions. The first parameter was the absolute dose to water (Dfmsrw, Qm...This study aimed to determine variations in tomotherapy beam outputs at multiple institutions. Measurements were obtained at 22 radiotherapy institutions. The first parameter was the absolute dose to water (Dfmsrw, Qmsr) in the machine-specific reference field (fmsr), which indicated a static field in the tomotherapy reference conditions defined by the International Atomic Energy Agency (IAEA) study group. The second measured parameter was the difference between the measured and the planed doses in the intensity modulated radiotherapy (IMRT) verification plans, which were created using a solid phantom by the vendor during tomotherapy apparatus installation to adjust the beam output. The IMRT verification plan error at each institution was defined as the systematic error of the beam output;Dfmsrw, Qmsr was subsequently modified. The Dfmsrw, Qmsr values of four institutions with a modified energy fluence per ideal open time (EFIOT) were lower than the values at other institutions. The mean value of all institutions except those four was 0.994 ± 0.013 Gy (range: 0.974 Gy, 1.017 Gy). When the Dfmsrw, Qmsr value was corrected by the IMRT verification error, this variation decreased. In addition, the mean IMRT verification errors in the TomoDirectTM and TomoHelicalTM modes with the TomoEDGETM mode were 1.2% ± 0.8% (range: -0.6%, 1.8%) and 0.2% ± 0.5% (range: -0.6%, 0.9%), respectively (p展开更多
文摘In intensity modulated radiation treatment (IMRT) planning, the use of asymmetrically collimated fields that are placed on central axis or its off-set is mostly required. Output is the main topic discussed today for extremely small and/or severe irregularly shaped fields. The air scatter data are involved directly or indirectly in obtaining the output. Despite the fact that extensive data have been published in many studies to provide a guide on the magnitude of output factor for clinical accelerators, there are very few data reviewed about output factor in-air or phantom for off-set fields. This study was aimed to investigate the impact of these conditions for small fields. This study was conducted in Elekta Synergy linear accelerator which produces 6 MV X-ray energy. The in-air output factor (Sc) has been measured by CC04 ion chamber with brass-alloy “build-up” cap and Dose-1 electrometer, and the total output (Scp) measurements were carried on at dose maximum depth in phantom by the same chamber and Thermoluminescence dosimeter (TLD) for 1 - 10 cm2 fields. The all measurements at center of isocenter and off-set fields at three directions (X2, Y1, Diagonal) were done. By decreasing field size from 10 to 2 cm2 at isocenter, the Sc value using CC04 was decreased to 5.4% and Scp using CC04 and TLD to 14.5% and 11% respectively. By increasing off-set value, the Sc and Scp values were increased in all directions comparing to central fields. The maximum increase was obtained in Y1 direction for Sc and Scp. TLD results for Scp is slightly higher than CC04. The dosimetric properties of small fields and their off-set should be evaluated and modelled appropriately in the treatment planning system to ensure accurate dose calculation in Intensity Modulated Radiation Treatment.
文摘This study aimed to determine variations in tomotherapy beam outputs at multiple institutions. Measurements were obtained at 22 radiotherapy institutions. The first parameter was the absolute dose to water (Dfmsrw, Qmsr) in the machine-specific reference field (fmsr), which indicated a static field in the tomotherapy reference conditions defined by the International Atomic Energy Agency (IAEA) study group. The second measured parameter was the difference between the measured and the planed doses in the intensity modulated radiotherapy (IMRT) verification plans, which were created using a solid phantom by the vendor during tomotherapy apparatus installation to adjust the beam output. The IMRT verification plan error at each institution was defined as the systematic error of the beam output;Dfmsrw, Qmsr was subsequently modified. The Dfmsrw, Qmsr values of four institutions with a modified energy fluence per ideal open time (EFIOT) were lower than the values at other institutions. The mean value of all institutions except those four was 0.994 ± 0.013 Gy (range: 0.974 Gy, 1.017 Gy). When the Dfmsrw, Qmsr value was corrected by the IMRT verification error, this variation decreased. In addition, the mean IMRT verification errors in the TomoDirectTM and TomoHelicalTM modes with the TomoEDGETM mode were 1.2% ± 0.8% (range: -0.6%, 1.8%) and 0.2% ± 0.5% (range: -0.6%, 0.9%), respectively (p