A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, s...A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis ...Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.展开更多
[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat...[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.展开更多
A novel image restoration scheme, which is super-resolution image restoration algorithm Poisson-maximum-afterword-probability based on Markvo constraint (MPMAP) combined with evaluating image detail parameter D, has b...A novel image restoration scheme, which is super-resolution image restoration algorithm Poisson-maximum-afterword-probability based on Markvo constraint (MPMAP) combined with evaluating image detail parameter D, has been proposed. The advantage of super-resolution algorithm MPMAP incorporated with parameter D lies in the fact that super-resolution algorithm MPMAP model is discrete, which is in accordance with remote-sensing imaging model, and the algorithm MPMAP is proved applicable to linear and non-linear imaging models with a unique solution when noise is not severe. According to simulation experiments for practical images, super-resolution algorithm MPMAP can retain image details better than most of traditional restoration methods; at the same time, the proposed parameter D can help to identify real point spread function (PSF) value of degradation process. Processing result of practical remote-sensing images by MPMAP combined with parameter D are given, it illustrates that MPMAP restoration scheme combined PSF estimation has a better restoration result than that of Photoshop processing, based on the same original images. It is proved that the proposed scheme is helpful to offset the lack of resolution of the original remote-sensing images and has its extensive application foreground.展开更多
This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engi...This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.展开更多
This paper calculates the parameters of image position and orientation,proposes a mathematical model and adopts a new method with three steps of transformations based on parallel ray projection.Every step of the model...This paper calculates the parameters of image position and orientation,proposes a mathematical model and adopts a new method with three steps of transformations based on parallel ray projection.Every step of the model is strict,and the map function of each transformation is the first order polynomials and other simple function.The final calculation of the parameters is for the linear equations with good status.As a result,the problem of the relativity of image parameter calculation is solved completely.Some experiments are carried out.展开更多
A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. I...A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS, PCA, Brovey, OWT(Orthogonal Wavelet Transform) and RWT(Redundant Wavelet Transform). The results show that the new method can keep almost the same spatial resolution as the panchromatic images, and the spectral effect of the new method is as good as those of wavelet-based methods.展开更多
By taking urban greening of Tai'an City of Shandong Province for example,selecting remote sensing image Quickbird with high resolution,and combining visual interpretation with automatic classification of the compu...By taking urban greening of Tai'an City of Shandong Province for example,selecting remote sensing image Quickbird with high resolution,and combining visual interpretation with automatic classification of the computer,based on urban green space systematic planning map,green space information of the built-up area has been selected for the research centering on green lands in urban parks,productive green lands,green lands attached to residential areas and units,green lands attached to the road,other green lands,water surfaces and so on.Through the statistics and analysis,the distribution condition of each type of urban green land has been obtained,and some suggestions have been proposed in view of existing problems of urban greening.It should enhance the construction of green lands in urban parks,residential areas and units,improve road greening level,implement vertical greening,increase the area of productive green lands and fully make use of idle lands.展开更多
Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth...Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.展开更多
The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry o...The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.展开更多
The alpine wetlands in QTP(Qinghai-Tibetan Plateau)have been profoundly impacted along with global climate changes.We employ satellite datasets and climate data to explore the relationships between alpine wetlands and...The alpine wetlands in QTP(Qinghai-Tibetan Plateau)have been profoundly impacted along with global climate changes.We employ satellite datasets and climate data to explore the relationships between alpine wetlands and climate changes based on remote sensing data.Results show that:1)the wetland NDVI(Normalized Difference Vegetation Index)and GPP(Gross Primary Production)were more sensitive to air temperature than to precipitation rate.The wetland ET(evapotranspiration)across alpine wetlands was greatly correlated with precipitation rate.2)Alpine wetlands responses to climate changes varied spatially and temporally due to different geographic environments,variety of wetland formation and human disturbances.3)The vegetation responses of the Zoige wetland was the most noticeable and related to the temperature,while the GPP and NDVI of the Qiangtang Plateau and Gyaring-Ngoring Lake were significantly correlated with both temperature and precipitation.4)ET in the Zoige wetland showed a significantly positive trend,while ET in Maidika wetland and the Qiangtang plateau showed a negative trend,implying wetland degradation in those two wetland regions.The complexities of the impacts of climate changes on alpine wetlands indicate the necessity of further study to understand and conserve alpine wetland ecosystems.展开更多
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin...Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.展开更多
Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure t...Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure the impacts of urbanization on surface runoff, water quality, air quality, biodiversity and rnicroclimate. Therefore, accurate estimation of impervious surfaces is critical for urban environmental monitoring, land management, decision-making and urban planning. Many approaches have been developed to estimate surface imperviousness, using remotely sensed data with various spatial resolutions. However, few studies, have investigated the effects of spatial resolution on estimating surface imperviousness. We compare medium-resolution Landsat data with high-resolution SPOT images to quantify the imperviousness in Beijing, China. The results indicated that the overall 91% accuracy of estimates of imperviousness based on TM data was considerably higher than the 81% accuracy of the SPOT data. The higher resolution SPOT data did not always predict the imperviousness of the land better than the TM data. At the whole city level, the TM data better predicts the percentage cover of impervious surfaces. At the sub-city level, however, the ring belts from the central core to the urban-rural peripheral, the SPOT data may better predict the imperviousness. These results highlighted the need to combine multiple resolution data to quantify the percentage of imperviousness, as higher resolution data do not necessarily lead to more accurate estimates. The methodology and results in this study can be utilized to identify the most suitable remote sensing data to quickly and efficiently extract the pattern of the impervious land, which could provide the base for further study on many related urban environmental problems.展开更多
Elasto-optical refractive index modulation due to photoacoustic initial pressure transients produced significant reflection of a probe beam when the absorbing interface had an appreciable refractive index difference.T...Elasto-optical refractive index modulation due to photoacoustic initial pressure transients produced significant reflection of a probe beam when the absorbing interface had an appreciable refractive index difference.This effect was harnessed in a new form of non-contact optical resolution photoacoustic microscopy called photoacoustic remote sensing microscopy.A noninterferometric system architecture with a low-coherence probe beam precludes detection of surface oscillations and other phase-modulation phenomenon.The probe beam was confocal with a scanned excitation beam to ensure detection of initial pressure-induced intensity reflections at the subsurface origin where pressures are largest.Phantom studies confirmed signal dependence on optical absorption,index contrast and excitation fluence.In vivo imaging of superficial microvasculature and melanoma tumors was demonstrated with~2.7±0.5μm lateral resolution.展开更多
Sunshine duration(SD) is strongly correlated with solar radiation, and is most widely used to estimate the latter. This study builds a remote sensing model on a 100 m × 100 m spatial resolution to estimate SD f...Sunshine duration(SD) is strongly correlated with solar radiation, and is most widely used to estimate the latter. This study builds a remote sensing model on a 100 m × 100 m spatial resolution to estimate SD for the Ningxia Hui Autonomous Region, China. Digital elevation model(DEM) data are employed to reflect topography, and moderate-resolution imaging spectroradiometer(MODIS) cloud products(Aqua MYD06-L2 and Terra MOD06-L2) are used to estimate sunshine percentage. Based on the terrain(e.g.,slope, aspect, and terrain shadowing degree) and the atmospheric conditions(e.g., air molecules, aerosols,moisture, cloud cover, and cloud types), observation data from weather stations are also incorporated into the model. Verification results indicate that the model simulations match reasonably with the observations,with the average relative error of the total daily SD being 2.21%. Further data analysis reveals that the variation of the estimated SD is consistent with that of the maximum possible SD; its spatial variation is so substantial that the estimated SD differs significantly between the south-facing and north-facing slopes,and its seasonal variation is also large throughout the year.展开更多
文摘A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
文摘Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.
基金Supported by the Key Science and Technology Projects of Guizhou Province,China[(2007)3017,(2008)3022]Major Special Project of Guizhou Province,China(2006-6006-2)
文摘[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.
文摘A novel image restoration scheme, which is super-resolution image restoration algorithm Poisson-maximum-afterword-probability based on Markvo constraint (MPMAP) combined with evaluating image detail parameter D, has been proposed. The advantage of super-resolution algorithm MPMAP incorporated with parameter D lies in the fact that super-resolution algorithm MPMAP model is discrete, which is in accordance with remote-sensing imaging model, and the algorithm MPMAP is proved applicable to linear and non-linear imaging models with a unique solution when noise is not severe. According to simulation experiments for practical images, super-resolution algorithm MPMAP can retain image details better than most of traditional restoration methods; at the same time, the proposed parameter D can help to identify real point spread function (PSF) value of degradation process. Processing result of practical remote-sensing images by MPMAP combined with parameter D are given, it illustrates that MPMAP restoration scheme combined PSF estimation has a better restoration result than that of Photoshop processing, based on the same original images. It is proved that the proposed scheme is helpful to offset the lack of resolution of the original remote-sensing images and has its extensive application foreground.
文摘This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.
文摘This paper calculates the parameters of image position and orientation,proposes a mathematical model and adopts a new method with three steps of transformations based on parallel ray projection.Every step of the model is strict,and the map function of each transformation is the first order polynomials and other simple function.The final calculation of the parameters is for the linear equations with good status.As a result,the problem of the relativity of image parameter calculation is solved completely.Some experiments are carried out.
文摘A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS, PCA, Brovey, OWT(Orthogonal Wavelet Transform) and RWT(Redundant Wavelet Transform). The results show that the new method can keep almost the same spatial resolution as the panchromatic images, and the spectral effect of the new method is as good as those of wavelet-based methods.
基金Supported by Natural Science Foundation of China (31070626)Natural Science Fund of Huaihai Institute of Technology (2010150041)
文摘By taking urban greening of Tai'an City of Shandong Province for example,selecting remote sensing image Quickbird with high resolution,and combining visual interpretation with automatic classification of the computer,based on urban green space systematic planning map,green space information of the built-up area has been selected for the research centering on green lands in urban parks,productive green lands,green lands attached to residential areas and units,green lands attached to the road,other green lands,water surfaces and so on.Through the statistics and analysis,the distribution condition of each type of urban green land has been obtained,and some suggestions have been proposed in view of existing problems of urban greening.It should enhance the construction of green lands in urban parks,residential areas and units,improve road greening level,implement vertical greening,increase the area of productive green lands and fully make use of idle lands.
基金Under the auspices of National Natural Science Foundation of China (No. 40871241, 40771170)National High Technology Research and Development Program of China (No. 2007AA12Z176)
文摘Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.
基金This work was funded by the National Natural Science Foundation of China(U1603242)the Major Science and Technology Projects in Inner Mongolia,China(ZDZX2018054).
文摘The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.
基金Under the auspices of the National Key R&D Program of China(No.2017YFA0603004)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA19030203)National Natural Science Foundation of China(No.41971390).
文摘The alpine wetlands in QTP(Qinghai-Tibetan Plateau)have been profoundly impacted along with global climate changes.We employ satellite datasets and climate data to explore the relationships between alpine wetlands and climate changes based on remote sensing data.Results show that:1)the wetland NDVI(Normalized Difference Vegetation Index)and GPP(Gross Primary Production)were more sensitive to air temperature than to precipitation rate.The wetland ET(evapotranspiration)across alpine wetlands was greatly correlated with precipitation rate.2)Alpine wetlands responses to climate changes varied spatially and temporally due to different geographic environments,variety of wetland formation and human disturbances.3)The vegetation responses of the Zoige wetland was the most noticeable and related to the temperature,while the GPP and NDVI of the Qiangtang Plateau and Gyaring-Ngoring Lake were significantly correlated with both temperature and precipitation.4)ET in the Zoige wetland showed a significantly positive trend,while ET in Maidika wetland and the Qiangtang plateau showed a negative trend,implying wetland degradation in those two wetland regions.The complexities of the impacts of climate changes on alpine wetlands indicate the necessity of further study to understand and conserve alpine wetland ecosystems.
基金funded by the National Natural Science Foundation of China(Grant No.40571029).
文摘Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.
基金supported by the National Basic Research Program (973) of China (No. 2008CB418104)the Major Programs of the Chinese Academy of Sciences (No. KZCX1-YW-14-4-1)the National Natural Science Foundation of China (No. 40901265)
文摘Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure the impacts of urbanization on surface runoff, water quality, air quality, biodiversity and rnicroclimate. Therefore, accurate estimation of impervious surfaces is critical for urban environmental monitoring, land management, decision-making and urban planning. Many approaches have been developed to estimate surface imperviousness, using remotely sensed data with various spatial resolutions. However, few studies, have investigated the effects of spatial resolution on estimating surface imperviousness. We compare medium-resolution Landsat data with high-resolution SPOT images to quantify the imperviousness in Beijing, China. The results indicated that the overall 91% accuracy of estimates of imperviousness based on TM data was considerably higher than the 81% accuracy of the SPOT data. The higher resolution SPOT data did not always predict the imperviousness of the land better than the TM data. At the whole city level, the TM data better predicts the percentage cover of impervious surfaces. At the sub-city level, however, the ring belts from the central core to the urban-rural peripheral, the SPOT data may better predict the imperviousness. These results highlighted the need to combine multiple resolution data to quantify the percentage of imperviousness, as higher resolution data do not necessarily lead to more accurate estimates. The methodology and results in this study can be utilized to identify the most suitable remote sensing data to quickly and efficiently extract the pattern of the impervious land, which could provide the base for further study on many related urban environmental problems.
基金funding from the Killam Trust(Izaak Walton Killam Memorial Scholarship)Alberta Innovates Technology Futures+11 种基金Alberta Enterprise and Advanced Education(Graduate Student Scholarship)University of Alberta(Dissertation fellowship)Andrew Stewart Awards and SPIE(SPIE Scholarship in Optics and Photonics)funding from NSERC(355544-2008,375340-2009 and STPGP 396444)the Terry-Fox Foundationthe Canadian Cancer Society(TFF 019237,TFF 019240 and CCS 2011-700718)Alberta Innovates Health Solutions(AIHS CRIO Team Award#201201154)The Alberta Cancer Research Institute(ACB 23728)the Leaders Opportunity Fund of the Canada Foundation for Innovation(18472)Alberta Advanced Education and Technology,Small Equipment Grants Program(URSI09007SEG)Alberta Ingenuity/Alberta Innovates(scholarships for graduate and undergraduate students)the Alberta Innovates Technology Futures Postdoctoral Fellowship.
文摘Elasto-optical refractive index modulation due to photoacoustic initial pressure transients produced significant reflection of a probe beam when the absorbing interface had an appreciable refractive index difference.This effect was harnessed in a new form of non-contact optical resolution photoacoustic microscopy called photoacoustic remote sensing microscopy.A noninterferometric system architecture with a low-coherence probe beam precludes detection of surface oscillations and other phase-modulation phenomenon.The probe beam was confocal with a scanned excitation beam to ensure detection of initial pressure-induced intensity reflections at the subsurface origin where pressures are largest.Phantom studies confirmed signal dependence on optical absorption,index contrast and excitation fluence.In vivo imaging of superficial microvasculature and melanoma tumors was demonstrated with~2.7±0.5μm lateral resolution.
基金Supported by the National Natural Science Foundation of China(41175077)Jiangsu Innovation Program for Graduate Education(CXZZ12-0506)
文摘Sunshine duration(SD) is strongly correlated with solar radiation, and is most widely used to estimate the latter. This study builds a remote sensing model on a 100 m × 100 m spatial resolution to estimate SD for the Ningxia Hui Autonomous Region, China. Digital elevation model(DEM) data are employed to reflect topography, and moderate-resolution imaging spectroradiometer(MODIS) cloud products(Aqua MYD06-L2 and Terra MOD06-L2) are used to estimate sunshine percentage. Based on the terrain(e.g.,slope, aspect, and terrain shadowing degree) and the atmospheric conditions(e.g., air molecules, aerosols,moisture, cloud cover, and cloud types), observation data from weather stations are also incorporated into the model. Verification results indicate that the model simulations match reasonably with the observations,with the average relative error of the total daily SD being 2.21%. Further data analysis reveals that the variation of the estimated SD is consistent with that of the maximum possible SD; its spatial variation is so substantial that the estimated SD differs significantly between the south-facing and north-facing slopes,and its seasonal variation is also large throughout the year.