期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
基于MFCC声音特征信号提取的托辊故障诊断
1
作者 郭洁 井庆贺 +3 位作者 闫寿庆 王鑫 谢苗 吴意兵 《中国安全科学学报》 CAS CSCD 北大核心 2023年第S02期116-121,共6页
为监测托辊健康运行状态,通过现场试验的方式提取了托辊正常音频信号与故障音频信号。针对提取的音频信号中包含有大量噪声的问题,提出一种改进的小波阈值去噪方法,该方法有效滤除了音频信号中的噪声,为信号的后期特征提取奠定了基础。... 为监测托辊健康运行状态,通过现场试验的方式提取了托辊正常音频信号与故障音频信号。针对提取的音频信号中包含有大量噪声的问题,提出一种改进的小波阈值去噪方法,该方法有效滤除了音频信号中的噪声,为信号的后期特征提取奠定了基础。为进一步研究正常音频信号与故障音频信号的特性差异性,利用梅尔倒谱系数(MFCC)特征提取法,得出了能明显观测到托辊正常状态与故障状态差异性的梅尔倒谱系数特征表征图。结果表明:故障音频信号时域图与频谱图比正常音频信号波动更加剧烈;托辊正常音频信号的梅尔倒谱系数特性表征图比故障音频信号的起始幅值高,且幅值下降更迟缓。 展开更多
关键词 托辊故障 故障音频 小波阈值去噪 滤波器 梅尔倒谱系数(mfcc)
下载PDF
基于鲁棒主成分分析和MFCC反复结构的歌声分离方法
2
作者 熊天 张天骐 +1 位作者 闻斌 吴超 《声学技术》 CSCD 北大核心 2023年第6期794-803,共10页
针对单一传统方法对歌声分离不彻底的问题,文章提出了一种基于鲁棒主成分分析(Robust Principal Component Analysis,RPCA)和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)反复结构的两步歌声伴奏分离模型。该模型有效... 针对单一传统方法对歌声分离不彻底的问题,文章提出了一种基于鲁棒主成分分析(Robust Principal Component Analysis,RPCA)和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)反复结构的两步歌声伴奏分离模型。该模型有效地改善了鲁棒主成分分析对歌声分离不完全和梅尔频率倒谱系数反复结构歌声在低频处分离不佳的问题。首先使用鲁棒主成分分析将混合音乐信号分解为低秩矩阵和稀疏矩阵,然后分别对其提取梅尔频率倒谱系数特征参数并且对其进行相似运算,构建相似矩阵及建立梅尔频率倒谱系数反复结构模型并通过反复结构模型分别得到低秩矩阵和稀疏矩阵相关的掩蔽矩阵,最后根据构建的掩蔽矩阵模型以及傅里叶逆变换得到背景音乐和歌声。在公开数据集上进行了实验,实验结果表明本文算法在歌声分离性能上与比较算法相比,平均信号干扰比值最高有接近7 dB的提高。 展开更多
关键词 鲁棒主成分分析(RPCA) 梅尔频率倒谱系数(mfcc) 歌声伴奏分离 反复结构
下载PDF
基于特征融合和B-SVM的鸟鸣声识别算法 被引量:1
3
作者 陈晓 曾昭优 《声学技术》 CSCD 北大核心 2024年第1期119-126,共8页
为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。... 为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。利用黑寡妇算法通过测试集对支持向量机模型的核参数和损失值进行优化得到B-SVM模型。利用Xeno-canto鸟鸣声数据集对本文算法进行了测试,结果表明该方法的识别准确率为93.23%。算法维度参数的大小和融合特征维度的高低是影响算法识别效果的重要因素。在相同条件下,文中所提的基于特征融合和B-SVM模型的鸟鸣声识别算法相较于其他特征参数和模型,识别的准确率更高,为野外鸟类识别提供了参考。 展开更多
关键词 鸟鸣声识别 梅尔频率倒谱系数 线性判别算法 黑寡妇优化算法 支持向量机
下载PDF
基于MFCC的空中交通管制语音指令的特征提取研究
4
作者 王兴林 《电声技术》 2023年第6期68-72,共5页
随着人工智能技术的不断应用,智能安全与智慧民航不断深入发展,通过科技手段提高空中交通飞行安全成为全球民航的共同选择。空中交通管制语音数据作为民航新型生产要素,对语音信号进行深入研究并合理运用,对于提高飞行安全具有重要意义... 随着人工智能技术的不断应用,智能安全与智慧民航不断深入发展,通过科技手段提高空中交通飞行安全成为全球民航的共同选择。空中交通管制语音数据作为民航新型生产要素,对语音信号进行深入研究并合理运用,对于提高飞行安全具有重要意义。文章介绍空中交通管制指令的基本要求,详细分析语音信号特征提取的各个环节,通过梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)提取语音信号的特征,再使用高斯混合模型(Gaussian Mixture Model,GMM)进行训练和分类,从而实现语音信号的识别,具有一定的实际运用价值。 展开更多
关键词 语音信号 特征提取 梅尔频率倒谱系数(mfcc) 高斯混合模型(GMM) 模型训练
下载PDF
一种基于MFCC和LPCC的文本相关说话人识别方法 被引量:14
5
作者 于明 袁玉倩 +1 位作者 董浩 王哲 《计算机应用》 CSCD 北大核心 2006年第4期883-885,共3页
在说话人识别的建模过程中,为传统矢量量化模型的码字增加了方差分量,形成了一种新的连续码字分布的矢量量化模型。同时采用美尔倒谱系数及其差分和线性预测倒谱系数及其差分相结合作为识别的特征参数,来进行与文本有关的说话人识别。... 在说话人识别的建模过程中,为传统矢量量化模型的码字增加了方差分量,形成了一种新的连续码字分布的矢量量化模型。同时采用美尔倒谱系数及其差分和线性预测倒谱系数及其差分相结合作为识别的特征参数,来进行与文本有关的说话人识别。通过与动态时间规整算法和传统的矢量量化方法进行比较表明,在系统响应时间并未明显增加的基础上,该模型识别率有一定提高。 展开更多
关键词 说话人识别 线性预测倒谱系数 美尔倒谱系数 矢量量化 动态时间规整
下载PDF
基于声音特征的隧道衬砌空洞识别方法研究
6
作者 代晓景 暴学志 +2 位作者 柴雪松 周城光 阎兆立 《声学技术》 CSCD 北大核心 2024年第1期135-141,共7页
目前隧道衬砌空洞检测以人工敲击判断为主,检测过程中由于受到检测人员水平、注意力等主观因素影响,检测结果存在较大不确定性,因此有必要研制一种智能化的检测装置实现空洞自动识别。文章开展了衬砌空洞敲击回声智能识别算法研究,通过... 目前隧道衬砌空洞检测以人工敲击判断为主,检测过程中由于受到检测人员水平、注意力等主观因素影响,检测结果存在较大不确定性,因此有必要研制一种智能化的检测装置实现空洞自动识别。文章开展了衬砌空洞敲击回声智能识别算法研究,通过提取隧道衬砌冲击回波的梅尔倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)作为特征,针对敲击回声脉冲信号长度不一的特点,提出了变帧长MFCC优化算法,并面向小样本条件,建立了支持向量机(Support Vector Machine,SVM)的识别模型。试验结果表明,该模型对衬砌空洞识别准确率可达89.9%。 展开更多
关键词 隧道衬砌空洞 声学信号处理 梅尔倒谱系数(mfcc) 支持向量机(SVM)
下载PDF
基于MFCC特征的声纹同一性鉴定方法 被引量:16
7
作者 王学光 诸珺文 张爱新 《计算机科学》 CSCD 北大核心 2021年第12期343-348,共6页
声纹作为当代司法鉴定技术发展的产物,在现代声像资料鉴定中发挥了至关重要的作用。传统的声纹分析方法是基于声音处理工具进行手工分析的,考虑到其具有严格的文本相关性以及比对的臆断性的缺点,其作为证据鉴定意见的证明力有待加强。... 声纹作为当代司法鉴定技术发展的产物,在现代声像资料鉴定中发挥了至关重要的作用。传统的声纹分析方法是基于声音处理工具进行手工分析的,考虑到其具有严格的文本相关性以及比对的臆断性的缺点,其作为证据鉴定意见的证明力有待加强。文中提出了一种基于Mel频率倒谱系数的同一性鉴定方法,即提取并量化包含原始声音的共振峰及其时间轴信息的包络作为声纹特征进行同一性比对。此方法改进了传统Mel频率倒谱系数的不足,提取共振峰的突变并将元音与响辅音的转变特性加入声纹特征,以提高其识别度。实验证明,此方法在检材与样本无关的情况下,同一性鉴定的准确率达到了85%,方差控制在9%左右,具有良好的同一性识别;而在非同一性鉴定中,该方法也能在结合人工分析的情况下给出较准确的结果。 展开更多
关键词 mfcc特征 MEL频率倒谱系数 同一性鉴定 证明力补强
下载PDF
基于MFCC和短时能量混合的异常声音识别算法 被引量:29
8
作者 吕霄云 王宏霞 《计算机应用》 CSCD 北大核心 2010年第3期796-798,共3页
针对现行异常声音识别算法复杂度高和特征识别率低的问题,将梅尔频率倒谱系数(MFCC)与短时能量混合特征应用到异常声音识别系统中。该混合特征使得高斯混合模型(GMM)分类器可获得比使用MFCC特征及其差分MFCC更好的分类性能。给出了系统... 针对现行异常声音识别算法复杂度高和特征识别率低的问题,将梅尔频率倒谱系数(MFCC)与短时能量混合特征应用到异常声音识别系统中。该混合特征使得高斯混合模型(GMM)分类器可获得比使用MFCC特征及其差分MFCC更好的分类性能。给出了系统实现的具体步骤,并通过仿真实验证明了该算法的有效性,分类器的平均识别率可达到90%以上,并且计算复杂度小。 展开更多
关键词 异常声音识别 梅尔倒谱系数 短时能量 高斯混合模型
下载PDF
基于MFCC和GMM的昆虫声音自动识别 被引量:16
9
作者 竺乐庆 张真 《昆虫学报》 CAS CSCD 北大核心 2012年第4期466-471,共6页
昆虫的运动、取食、鸣叫都会发出声音,这些声音存在种内相似性和种间差异性,因此可用来识别昆虫的种类。基于昆虫声音的昆虫种类自动检测技术对协助农业和林业从业人员方便地识别昆虫种类非常有意义。本研究采用了语音识别领域里的声音... 昆虫的运动、取食、鸣叫都会发出声音,这些声音存在种内相似性和种间差异性,因此可用来识别昆虫的种类。基于昆虫声音的昆虫种类自动检测技术对协助农业和林业从业人员方便地识别昆虫种类非常有意义。本研究采用了语音识别领域里的声音参数化技术来实现昆虫的声音自动鉴别。声音样本经预处理后,提取梅尔倒谱系数(Mel-frequency cepstrum coefficient,MFCC)作为特征,并用这些样本提取的MFCC特征集训练混合高斯模型(Gaussian mixturemodel,GMM)。最后用训练所得到的GMM对未知类别的昆虫声音样本进行分类。该方法在包含58种昆虫声音的样本库中进行了评估,取得了较高的识别正确率(平均精度为98.95%)和较理想的时间性能。该测试结果证明了基于MFCC和GMM的语音参数化技术可以用来有效地识别昆虫种类。 展开更多
关键词 昆虫 种类鉴定 声音处理 自动识别 梅尔倒谱系数 混合高斯模型
下载PDF
结合MFCC分析和仿生模式识别的语音识别研究 被引量:4
10
作者 王宪保 陈勇 汤丽平 《计算机工程与应用》 CSCD 北大核心 2011年第12期20-22,26,共4页
提出了一种基于MFCC系数分析和仿生模式识别的语音识别方法,该方法对训练样本MFCC相同分量在各类语音间距离进行了分析,并通过与传统选取方法的比较实验,说明在小词汇量的语音识别中,选取合适的MFCC系数,不仅能减小计算量,正确识别率也... 提出了一种基于MFCC系数分析和仿生模式识别的语音识别方法,该方法对训练样本MFCC相同分量在各类语音间距离进行了分析,并通过与传统选取方法的比较实验,说明在小词汇量的语音识别中,选取合适的MFCC系数,不仅能减小计算量,正确识别率也会得到一定程度的提高。运用仿生模式识别理论中同类样本连续的观点,通过在特征空间中对训练样本进行有效的覆盖,大大提高了识别结果。 展开更多
关键词 仿生模式识别 语音识别 Mel频率倒谱系数(mfcc)
下载PDF
基于ARIMA预测MFCC特征的声纹同一性鉴定方法 被引量:7
11
作者 王学光 诸珺文 张爱新 《计算机科学》 CSCD 北大核心 2022年第5期92-97,共6页
声纹识别技术的关键是从语音信号中提取具有说话人特征的语音特征参数。考虑到当下大多是运用鉴定人的经验对两段语音是否来源于同一人进行判定,在前期研究的基础上,结合MFCC特征,提出一种基于ARIMA预测的声纹同一性鉴定方法,以提高具... 声纹识别技术的关键是从语音信号中提取具有说话人特征的语音特征参数。考虑到当下大多是运用鉴定人的经验对两段语音是否来源于同一人进行判定,在前期研究的基础上,结合MFCC特征,提出一种基于ARIMA预测的声纹同一性鉴定方法,以提高具有年份差距的检材与样本比对的准确率。此方法在Mel倒谱系数声纹同一性鉴定方法基础上,采用自回归综合移动平均季节序列作出线性最小均方估计,对声纹特征进行预测,改良了包含元音与响辅音的共振峰特性。实验证明,ARIMA时间序列的预测结果很好,且使用ARIMA改良的基于Mel倒谱系数的文本无关同一性鉴定的准确率较高,相似度在60%以上。 展开更多
关键词 ARIMA预测 MEL倒谱系数 mfcc特征 同一性鉴定
下载PDF
基于MFCC和双重GMM的鸟类识别方法 被引量:13
12
作者 王恩泽 何东健 《计算机工程与设计》 CSCD 北大核心 2014年第5期1868-1871,F0003,共5页
针对鸟类鸣声信号变化丰富和复杂的特点,提出一种基于MFCC和鸣叫、鸣唱声GMM模型的鸟类识别方法。该方法拟采用将鸟鸣声分为鸟叫声和鸟唱声的策略,分别提取其特征参数MFCC,提出双重GMM模型进行训练和识别。用8种鸟的鸣叫声和鸣唱声1077... 针对鸟类鸣声信号变化丰富和复杂的特点,提出一种基于MFCC和鸣叫、鸣唱声GMM模型的鸟类识别方法。该方法拟采用将鸟鸣声分为鸟叫声和鸟唱声的策略,分别提取其特征参数MFCC,提出双重GMM模型进行训练和识别。用8种鸟的鸣叫声和鸣唱声1077个样本进行实验,实验结果表明,双重GMM模型的识别率达到90%以上,与单一鸣声模型相比具有更高的识别率。 展开更多
关键词 鸟类识别 梅尔倒谱系数 鸣叫 鸣唱 双重高斯混合模型
下载PDF
基于MFCC样本熵和灰狼算法优化支持向量机的天然地震与人工爆破自动识别 被引量:4
13
作者 庞聪 江勇 +2 位作者 廖成旺 吴涛 丁炜 《地震工程学报》 CSCD 北大核心 2022年第5期1169-1175,共7页
针对天然地震与人工爆破波形特征相似、难以区分的情况,结合灰狼优化算法和支持向量机,提出一种地震事件性质辨识新方法。通过梅尔频率倒谱系数法对2013年四川芦山地震地震事件信号和人工爆破信号进行分析,进过预加重、FFT、梅尔滤波及... 针对天然地震与人工爆破波形特征相似、难以区分的情况,结合灰狼优化算法和支持向量机,提出一种地震事件性质辨识新方法。通过梅尔频率倒谱系数法对2013年四川芦山地震地震事件信号和人工爆破信号进行分析,进过预加重、FFT、梅尔滤波及离散余弦变换等步骤,提取静态系数样本熵、一阶差分系数样本熵和二阶差分系数样本熵等作为样本特征集。使用灰狼算法优化支持向量机径向基核函数RBF中的惩罚系数和核函数半径形成新的GWO-SVM分类器,然后对事件进行辨识。结果表明:GWO-SVM分类器辨识效果明显优于SVM、RobustBoost集成学习、LDA、PLDA等分类器,其在1000次循环识别实验下的准确率均值相对SVM提高了9.2个百分点,标准差降低了3.2以上;t检验证明MFCC样本熵各特征具有可靠的地震事件分类效果;GWO-SVM与MFCC样本熵可作为天然地震事件与人工爆破事件的辨识方法与分类判据。 展开更多
关键词 梅尔频率倒谱系数 样本熵 灰狼算法 支持向量机 径向基核函数 自动识别
下载PDF
新型MFCC和波动模型相结合的二层环境声音识别 被引量:2
14
作者 李勇 李应 余清清 《计算机工程与应用》 CSCD 北大核心 2011年第30期132-135,139,共5页
对生态环境中各种不同的声音进行快速准确的识别有重要的现实意义,但是因其具有较高背景噪声加大了识别的难度。提出一种具有良好抗噪能力和较高识别性能的两层音频识别技术。选择经过改进的新型的MFCC参数以及波动模型作为生态环境声... 对生态环境中各种不同的声音进行快速准确的识别有重要的现实意义,但是因其具有较高背景噪声加大了识别的难度。提出一种具有良好抗噪能力和较高识别性能的两层音频识别技术。选择经过改进的新型的MFCC参数以及波动模型作为生态环境声音的特征集合。利用这种新型的MFCC系数构造音频信号的高斯分布模型,并且计算未知音频信号与样本音频信号的高斯分布模型之间的Kullback-Leibler距离,随后计算它们的波动模型之间的欧几里德距离。根据计算出的Kullback-Leibler距离和欧几里德距离实现两层音频识别系统。实验结果表明两层音频识别技术即使在噪声的影响下也能保持较高的识别率。 展开更多
关键词 生态环境 声音识别 改进的Mel频率倒谱参数 波动模型 Kullback-Leibler距离
下载PDF
基于改进C_0复杂度和MFCC相似度的端点检测 被引量:5
15
作者 许昊 张二华 《现代电子技术》 北大核心 2015年第10期7-9,15,共4页
为了提高语音端点检测的准确率,提出一种基于改进C0复杂度和MFCC相似度相结合的端点检测算法。首先,计算每一帧语音信号的C0复杂度以及MFCC相似度。然后,结合C0复杂度与MFCC相似度作为新的特征参数,设置阈值进行端点检测。对信噪比... 为了提高语音端点检测的准确率,提出一种基于改进C0复杂度和MFCC相似度相结合的端点检测算法。首先,计算每一帧语音信号的C0复杂度以及MFCC相似度。然后,结合C0复杂度与MFCC相似度作为新的特征参数,设置阈值进行端点检测。对信噪比在-15~15 dB范围内的含噪语音进行端点检测,使用Matlab软件进行仿真实验。实验结果表明,该方法相对于单独的两种方法提高了检测率,且稳定性更强。 展开更多
关键词 音信号处理 C0复杂度 mfcc相似度 端点检测
下载PDF
基于音频特征的水车室工作状态异常检测 被引量:1
16
作者 曾广栋 魏学锋 +2 位作者 何林 孙长江 张旋 《水电能源科学》 北大核心 2024年第8期168-172,共5页
水电站的水车室包含轴承和顶盖等机械设备,受水力因素影响,水车室的异常工作会带来较大的安全隐患,基于大数据分析的精确维护对于水车室的可靠运行至关重要。针对水车室的异常工作状态,通过模型训练、特征工程和分类模型的开发等过程,采... 水电站的水车室包含轴承和顶盖等机械设备,受水力因素影响,水车室的异常工作会带来较大的安全隐患,基于大数据分析的精确维护对于水车室的可靠运行至关重要。针对水车室的异常工作状态,通过模型训练、特征工程和分类模型的开发等过程,采用STFT、Log-Mel、MFCC等方法对音频数据进行了预处理,建立了基于音频数据的异常检测模型,并对溪洛渡水电站水车室工作状态进行了异常检测。结果表明,Log-Mel方法具有有效性。研究结果不仅降低了异常检测的成本,还为水电机组的健康监测提供了参考。 展开更多
关键词 音频数据 水车室 STFT Log-Mel 梅尔频率倒频谱系数(mfcc) 时域特征 支持向量机
下载PDF
基于MFCC和HMM的气固流型辨识 被引量:2
17
作者 胡红利 闫洁冰 +1 位作者 邢文奇 张炜 《沈阳工业大学学报》 EI CAS 北大核心 2013年第5期555-560,共6页
针对气力输送管道中测控装置后常见的三种过渡流型,即中心流、环状流和层状流,采用静电传感器作为测量装置获得静电流动噪声信号,借鉴语音信号处理方法,提取静电流动噪声信号的梅尔频率倒谱系数(MFCC)及其一阶差分作为特征参数,用特征... 针对气力输送管道中测控装置后常见的三种过渡流型,即中心流、环状流和层状流,采用静电传感器作为测量装置获得静电流动噪声信号,借鉴语音信号处理方法,提取静电流动噪声信号的梅尔频率倒谱系数(MFCC)及其一阶差分作为特征参数,用特征参数训练连续高斯混合密度隐马尔科夫模型(CGHMM),建立不同流型的模型库,再用训练好的CGHMM模型对提取的特征参数进行分类,进而实现流型识别.实验结果表明,该方法识别率达到98%,为气固流流型识别及气力输送测控装置提供了新的研究方法. 展开更多
关键词 气固两相流 测控装置 语音信号处理 流型识别 梅尔频率倒谱系数 静电传感器 流动噪声信号 连续高斯混合密度隐马尔科夫模型
下载PDF
基于MFCC-SVM和交叉验证方法的环境音分类 被引量:8
18
作者 李玲俐 《计算机与现代化》 2016年第8期36-39,共4页
用于音乐和语音的识别方法不适用于环境音的识别。提出一种基于MFCC(Mel频率倒谱系数)-SVM(支持向量机)的方法,使用特征表示和学习优化共同来实现办公室10种环境音的分类。环境音数据使用的是IEEE Audio and Acoustic Signal Processing... 用于音乐和语音的识别方法不适用于环境音的识别。提出一种基于MFCC(Mel频率倒谱系数)-SVM(支持向量机)的方法,使用特征表示和学习优化共同来实现办公室10种环境音的分类。环境音数据使用的是IEEE Audio and Acoustic Signal Processing(AASP)Challenge Dataset下载的标准数据集。在分析和优化SVM参数过程中,通过改变Mel系数参数的个数,充分考虑有效的MFCC特征表示。实验结果表明,使用MFCC特征和SVM分类器,采用5-折交叉验证的测试方法,得到的平均分类准确率可达88.05%,分类效果明显优于默认的MFCC-SVM算法。 展开更多
关键词 MEL频率倒谱系数 支持向量机 交叉验证 环境音分类 特征提取
下载PDF
基于MFCC-SVM的海洋机械噪声监测系统 被引量:4
19
作者 王利恒 赵智浩 《自动化与仪表》 2020年第12期54-58,共5页
针对海洋环境噪声的特性非常复杂,而水下噪声监测的样本往往较少且不全面等问题,设计了适用于样本数量较少的海洋机械噪声检测系统。该系统基于MFCC特征参数提取将接收到的声音信号进行分类建立特征库,并用支持向量机的机器学习算法对... 针对海洋环境噪声的特性非常复杂,而水下噪声监测的样本往往较少且不全面等问题,设计了适用于样本数量较少的海洋机械噪声检测系统。该系统基于MFCC特征参数提取将接收到的声音信号进行分类建立特征库,并用支持向量机的机器学习算法对陌生信号分类识别。仿真及试验数据分析的结果显示,在海洋环境噪声背景下该系统能较好地监测出机械噪声的存在。 展开更多
关键词 海洋噪声监测 梅尔频率倒谱系数 支持向量机
下载PDF
基于MFCC相似度和谱熵的端点检测算法 被引量:6
20
作者 邓瑞 肖纯智 高勇 《现代电子技术》 2013年第21期67-69,共3页
为提高低信噪比环境下语音端点检测的准确率,提出了一种基于Mel倒谱参数相似度和谱熵的端点检测算法。首先,提取语音帧的的Mel频率倒谱参数,将前十帧声信号作为背景噪声,然后计算每一帧语音和噪声MFCC的相关系数距离,结合MFCC相似距离... 为提高低信噪比环境下语音端点检测的准确率,提出了一种基于Mel倒谱参数相似度和谱熵的端点检测算法。首先,提取语音帧的的Mel频率倒谱参数,将前十帧声信号作为背景噪声,然后计算每一帧语音和噪声MFCC的相关系数距离,结合MFCC相似距离与谱熵做综合判决。实验结果表明,在低信噪比环境下此方法相对谱熵法能够提高检测准确率。 展开更多
关键词 语音信号处理 端点检测 Mel频率倒谱参数 相关系数 谱熵
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部