期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Electrochemical Performance of Surface-Modified LiMn_2O_4 Prepared by a Melting Impregnation Method 被引量:3
1
作者 Jian TU Xinbing ZHAO Gaoshao CAO Tiejun ZHU Dagao ZHUANG diangping TU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第4期433-436,共4页
The surface of as-prepared LiMn2O4 was modified with ZnO, Al2O3, CoO and LiCoO2 using a simple nitrate melting impregnation method. Transmission electron microscopy (TEM) studies indicated that oxide nano- particles... The surface of as-prepared LiMn2O4 was modified with ZnO, Al2O3, CoO and LiCoO2 using a simple nitrate melting impregnation method. Transmission electron microscopy (TEM) studies indicated that oxide nano- particles in the range of 10~50 nm are coated on the surface of the spinel. The surface modified samples show better capacity retention than the unmodified LiMn2O4 spinel at both room temperature and 55℃. Among these samples, the ZnO-modified LiMn2O4 shows the best combination of a high capacity and a low capacity fading rate of 0.036% per cycle at room temperature and 0.064% per cycle at 55℃. The improvement for surface modified LiMn2O4 can be attributed to the inhibition of Mn dissolution and O losses on the surface. 展开更多
关键词 LiMn2O4 spinel Surface modification melting impregnation Cathode materials Lithium-ion batteries
下载PDF
Melt migration and melt-rock reaction in the Alpine-Apennine peridotites:Insights on mantle dynamics in extending lithosphere
2
作者 Elisabetta Rampone Giulio Borghini Valentin Basch 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第1期151-166,共16页
The compositional variability of the lithospheric mantle at extensional settings is largely caused by the reactive percolation of uprising melts in the thermal boundary layer and in lithospheric environments.The Alpin... The compositional variability of the lithospheric mantle at extensional settings is largely caused by the reactive percolation of uprising melts in the thermal boundary layer and in lithospheric environments.The Alpine-Apennine(A-A)ophiolites are predominantly constituted by mantle peridotites and are widely thought to represent analogs of the oceanic lithosphere formed at ocean/continent transition and slow-to ultraslow-spreading settings.Structural and geochemical studies on the A-A mantle peridotites have revealed that they preserve significant compositional and isotopic heterogeneity at variable scale,reflecting a long-lived multi-stage melt migration,intrusion and melt-rock interaction history,occurred at different lithospheric depths during progressive uplift.The A-A mantle peridotites thus constitute a unique window on mantle dynamics and lithosphere-asthenosphere interactions in very slow spreading environments.In this work,we review field,microstructural and chemical-isotopic evidence on the major stages of melt percolation and melt-rock interaction recorded by the A-A peridotites and discuss their consequences in creating chemical-isotopic heterogeneities at variable scales and enhancing weakening and deformation of the extending mantle.Focus will be on three most important stages:(i)old(pre-Jurassic)pyroxenite emplacement,and the significant isotopic modification induced in the host mantle by pyroxenite-derived melts,(ii)melt-peridotite interactions during Jurassic mantle exhumation,i.e.the open-system reactive porous flow at spinel facies depths causing bulk depletion(origin of reactive harzburgites and dunites),and the shallower melt impregnation which originated plagioclase-rich peridotites and an overall mantle refertilization.We infer that migrating melts largely originated as shallow,variably depleted,melt fractions,and acquired Si-rich composition by reactive dissolution of mantle pyroxenes during upward migration.Such melt-rock reaction processes share significant similarities with those documented in modern oceanic peridotites from slow-to ultraslow-spreading environments and track the progressive exhumation of large mantle sectors at shallow depths in oceanic settings where a thicker thermal boundary layer exists,as a consequence of slow-spreading rate. 展开更多
关键词 Mantle peridotite PYROXENITE melt migration melt impregnation melt-rock reaction Alpine-Apennine ophiolites
下载PDF
Progress in Recrystallized SiC and Its Composites
3
作者 GUO Wenming XIAO Hanning GAO Pengzhao 《China's Refractories》 CAS 2015年第3期22-28,共7页
Recrystallized silicon carbide( RSi C),a high purity Si C material sintered by the process of evaporation-condensation without any additives,is one of the most important structural materials in the fields of high te... Recrystallized silicon carbide( RSi C),a high purity Si C material sintered by the process of evaporation-condensation without any additives,is one of the most important structural materials in the fields of high temperatures. However,its low density and porous structure caused by the sintering mechanism in the absence of shrinkage,restrict its wide applications in engineering.This paper reviews the research progress and related technologies on the preparation of high-density RSi C and its composites. RSi C with relative high density up to 2. 75g·cm- 3can be obtained by a combination of pretreatment to Si C raw materials such as reshaping,modification and particle size distribution,and appropriate forming method. Post treatments such as cyclic pyrolysis and impregnation- recrystallization,and slurry impregnation- recrystallization are needed for the further density increase of RSi C( 2. 99 g·cm- 3). In addition,high performance RSi C- Mo Si2 and RSi C- Al composites obtained by melt infiltration are also reviewed. 展开更多
关键词 recrystallized silicon carbide molybdenum disilicide polymer pyrolysis and impregnation melt infiltration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部