期刊文献+
共找到1,988篇文章
< 1 2 100 >
每页显示 20 50 100
Influence of laser shock peening on microstructure and high-temperature oxidation resistance of Ti45Al8Nb alloy fabricated via laser melting deposition
1
作者 Lu-lu JIANG Liang LAN +6 位作者 Cheng-yan BAI Ru-yi XIN Shuang GAO Hao-yu WANG Bo HE Chao-yue CHEN Guo-xin LU 《中国有色金属学报》 北大核心 2025年第1期157-168,共12页
Laser shock peening(LSP)was used to enhance the high-temperature oxidation resistance of laser melting deposited Ti45Al8Nb alloy.The microstructure and high-temperature oxidation behavior of the as-deposited Ti45Al8Nb... Laser shock peening(LSP)was used to enhance the high-temperature oxidation resistance of laser melting deposited Ti45Al8Nb alloy.The microstructure and high-temperature oxidation behavior of the as-deposited Ti45Al8Nb alloy before and after LSP were investigated by scanning electron microscopy,X-ray diffraction,and electron backscatter diffraction.The results indicated that the rate of mass gain in the as-deposited sample after LSP exhibited a decrease when exposed to an oxidation temperature of 900℃,implying that LSP-treated samples exhibited superior oxidation resistance at high temperatures.A gradient structure with a fine-grain layer,a deformed-grain layer,and a coarse-grain layer was formed in the LSP-treated sample,which facilitated the diffusion of the Al atom during oxidation,leading to the formation of a dense Al_(2)O_(3)layer on the surface.The mechanism of improvement in the oxidation resistance of the as-deposited Ti45Al8Nb alloy via LSP was discussed. 展开更多
关键词 TiAl alloy laser melting deposition laser shock peening additive manufacturing oxidation resistance
下载PDF
Corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting
2
作者 Meng-zhen ZHU Jing-lei MIAO +3 位作者 Xiong-wen ZHOU Er-lin ZHANG Zhi-lin LIU Hai-lin YANG 《中国有色金属学报》 北大核心 2025年第1期143-156,共14页
The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found th... The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found that the charge transfer resistance of Ti−3Cu alloy was 4.89×10^(5)Ω∙cm^(2),which was doubled the data obtained by CP-Ti alloy.The antibacterial rates of Ti−3Cu alloy against S.mutans and P.gingivalis were 45.0%and 54.5%.And the antibacterial rates increased with the prolongation of cultivation time,reaching up to 62.8%and 68.6%,respectively.The in-situ nano Ti_(2)Cu precipitates were homogeneously distributed in the matrix of the Ti−3Cu alloy,which was the key reason of increasing the corrosion resistance.Additionally,the microscale electric fields between theα-Ti matrix and the Ti_(2)Cu was responsible for the enhancement of the antibacterial properties. 展开更多
关键词 selective laser melting Ti−3Cu alloy MICROSTRUCTURE corrosion resistance antibacterial properties
下载PDF
Occurrence of the Iron–rich Melt in the Heijianshan Iron Deposit, Eastern Tianshan, NW China: Insights into the Origin of Volcanic Rock–hosted Iron Deposits 被引量:5
3
作者 LI Houmin LI Lixing +4 位作者 DING Jianhua LI Yanhe SONG Zhe MENG Jie MA Yubo 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期666-681,共16页
Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections ar... Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections are considered as direct evidence for the presence of iron-rich melt, yet unequivocal outcrop-scale evidence of iron-rich melts are still lacking in volcanic rock-hosted iron deposits. Submarine volcanic rock-hosted iron deposits, which are mainly distributed in the western and eastern Tianshan Mountains in Xinjiang, are important resources of iron ores in China, but it remains unclear whether iron-rich melts have played a role in the mineralization of such iron ores. In this study, we observed abundant iron-rich agglomerates in the brecciated andesite lava of the Heijianshan submarine volcanic rock-hosted iron deposit, Eastern Tianshan, China. The iron-rich agglomerates occur as irregular and angular masses filling fractures of the host brecciated andesite lava. They show concentric potassic alteration with silicification or epidotization rims, indicative of their formation after the wall rocks. The iron-rich agglomerates have porphyritic and hyalopilitic textures, and locally display chilled margins in the contact zone with the host rocks. These features cannot be explained by hydrothermal replacement of wall rocks (brecciated andesite lava) which is free of vesicle and amygdale, rather they indicate direct crystallization of the iron-rich agglomerates from iron-rich melts. We propose that the iron-rich agglomerates were formed by open-space filling of volatile-rich iron-rich melt in fractures of the brecciated andesite lava. The iron-rich agglomerates are compositionally similar to the wall-rock brecciated andesite lava, but have much larger variation. Based on mineral assemblages, the iron-rich agglomerates are subdivided into five types, i.e., albite-magnetite type, albite-K-feldspar- magnetite type, K-feldspar-magnetite type, epidote-magnetite type and quartz-magnetite type, representing that products formed at different stages during the evolution of a magmatic-hydrothermal system. The albite-magnetite type represents the earliest crystallization product from a residual iron- rich melt; the albite-K-feldspar-magnetite and K-feldspar-magnetite types show features of magmatic- hydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The occurrence of iron-rich agglomerates provides macroscopic evidence for the presence of iron-rich melts in the mineralization of the Heijianshan iron deposit. It also indicates that iron mineralization of submarine volcanic rock-hosted iron deposits is genetically related to hydrothermal fluids derived from iron-rich melts. 展开更多
关键词 iron-rich agglomerates iron-rich melt volatile submarine volcanic iron deposit Heijianshan Eastern Tianshan
下载PDF
Investigation into Spatter Particles and Their Effect on the Formation Quality During Selective Laser Melting Processes 被引量:5
4
作者 Zhiqiang Wang Xuede Wang +3 位作者 Xin Zhou Guangzhao Ye Xing Cheng Peiyu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期243-263,共21页
During the selective laser melting process,a high-energy laser beam acts on the powder,a molten pool is rapidly generated and the characteristic parameters are constantly changing.Among them,temperature is one of the ... During the selective laser melting process,a high-energy laser beam acts on the powder,a molten pool is rapidly generated and the characteristic parameters are constantly changing.Among them,temperature is one of the important parameters in the forming process.Due to the generation of splash particles,there will be defects in the microstructure,which will seriously affect the formation quality of the prepared parts.Therefore,it is necessary to study the relationships between the splash behavior,molten pool characteristics and product quality.The finite element simulation of the transient temperature field was performed by ANSYS software.Time-series images at different frame rates were obtained with a high-speed camera,and the dynamic process of splashing was observed.Using IN718 alloy powder,the influence of the laser energy density on the light intensity of the molten pool was studied.The appearance of splash particles and the deviation of the powder chemical elements caused by the splash were analyzed.The results show that the transient temperature field with drastic change is easy to cause spatter,which is consistent with the experimental results.There are large differences in the splash at different shooting frame rates.Increasing the frame rate can allow the observation of details such as the shape,size and number of splash particles,which is beneficial for studying the process of splash formation.At the moment when the splash occurs,the light intensity of the molten pool always first increases and then decreases,depending on the energy input.The higher the energy input is,the more intense the light intensity of the molten pool and the higher the peak interval distribution.Compared with fresh powder,the contents of Al and Ti in powder reused 5 times were reduced by 0.15%and 0.02%,respectively.The increases of these two elements in the splash were 16.18%and 29.62%,respectively,and the content of Nb even exceeded the standard range.When the energy density decreased from 229.17 J/mm3 to 130.95 J/mm3,the relative density of the part increased from 91.82%to 99.83%.This shows that reducing the energy input can reduce the splash to suppress the generation of defects,along with the weakening of the overall light intensity of the molten pool.These results can provide a basis for feature extraction of the molten pool,which is of great significance for real-time monitoring and online control in manufacturing processes and ensuring product quality. 展开更多
关键词 Selective laser melting temperature field simulation spatter behavior
下载PDF
Metal foam and fin implementation into a triple concentric tube heat exchanger over melting evolution 被引量:1
5
作者 M.A.Erfani Moghaddam M.R.Hassani Soukht Abandani +2 位作者 Kh.Hosseinzadeh Mohammad Behshad Shafii D.D.Ganji 《Theoretical & Applied Mechanics Letters》 CSCD 2022年第2期118-126,共9页
It is believed that it is going to be a sizeable mismatch between supply and demand when it comes to renewable resources.Lately,researchers are on course to compensate for the unpredictabilityof such resources by the ... It is believed that it is going to be a sizeable mismatch between supply and demand when it comes to renewable resources.Lately,researchers are on course to compensate for the unpredictabilityof such resources by the employment of phase change materials(PCMs).Having multiple advantages,PCMs generally suffer from inadequate thermal conductivity which causes prolonged transition procedures.To tackle this issue,this study is fixated on two parameterswhich are linked to fins addition and porous media incorporation in a melting process within a triple concentric tube heat exchanger(TCTHX).The results provided by multiple cases underlined the significance of natural convection in the bare system,although finned and copper-metal-foam cases outshine buoyancy forces by roughly 45%and 97%,respectively.Material is a major determent when it comes to the selection of porous media as Al_(2)O_(3) registered the weakest performance among SiC,Ni and Cu,however,it managed to speed up the process by 75%which still is much higher than the finned system,implying that porous media is of higher priority over fins.The best scenario transpiredwhile fins and copper metal foam were integrated as 26%and 97%soars in efficacy have been obtained compared to individual incorporation of porous media and fins,respectively. 展开更多
关键词 Thermal storage TCTHX FINS melting evolution Porous media Heat exchanger
下载PDF
Strength and plasticity improvement induced by strong grain refinement after Zr alloying in selective laser-melted AlSiMg1.4 alloy 被引量:1
6
作者 Yao-xiang GENG Chun-feng ZAI +3 位作者 Jiang YU Hao TANG Hong-wei LÜ Zhi-jie ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2733-2742,共10页
In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech... In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM. 展开更多
关键词 selective laser melting process stability grain refinement microstructure mechanical properties
下载PDF
Effects of projectile parameters on the momentum transfer and projectile melting during hypervelocity impact 被引量:1
7
作者 Wenjin Liu Qingming Zhang +6 位作者 Renrong Long Zizheng Gong Ren Jiankang Xin Hu Siyuan Ren Qiang Wu Guangming Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期89-103,共15页
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul... The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection. 展开更多
关键词 Hypervelocity impact Energy partitioning Impact melting Momentum transfer
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
8
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
SOLIDIFIED PRODUCT FROM Bi-Sr-Ca-Cu-O MELT AND ITS TRANSFORMATION INTO SUPERCONDUCTOR
9
作者 ZHANG Cheng HU Zhuangqi GE Yunlong WANG Yongzhong QIAO Guiwen Institute of Metal Research,Academia Sinica,Shenyang,China doctorate student Institute of Metal Research,Academia Sinica,Shenyang 110015,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第6期383-390,共8页
The Bi_2(Sr,Ca)_3Cu_2O_x system superconductor was prepared by different melting procedures and after treatment.The effects of cooling rate,annealing temperature and time,as well as melting procedures on phase transfo... The Bi_2(Sr,Ca)_3Cu_2O_x system superconductor was prepared by different melting procedures and after treatment.The effects of cooling rate,annealing temperature and time,as well as melting procedures on phase transformation were investigated.The structure and properties were examined by X-ray diffraction,optical microscopy,EPMA,DTA,TGA and measurements of electric and magnetic properties.When the melt of nominal composition Bi_2(Sr,Ca)_3Cu_2O_x solidified in air,the Bi_2(Sr,Ca)_3Cu_2O_(8+δ)(2212)superconducting phase is stable,the easily solidified product including Bi_2(Sr,Ca)_2CuO_(6+δ)(2201)phase is metastable, and another may be amorphous if rapidly quenched.The last two may transform into 2212 phase by after treatment at an optimal annealing temperature ranging 780—870℃.While 2201 phase,prepared by the laser floating zone melting method,may easily transform into 2212 phase at layer or filament in shape which is favourable to improve the links among superconducting grains and critical current density. 展开更多
关键词 Bi system superconductor melt stability phase transformation
下载PDF
Observations on Dissolution of La and Nd into Their Halide Melts in a See-through Cell
10
作者 冯力 郭春泰 +1 位作者 李洁 唐定骧 《Journal of Rare Earths》 SCIE EI CAS CSCD 1991年第1期20-22,共3页
Visual observations on dissolution of La in LaCl_3-KCl and Nd in NdCl_3-KCl as well as La,Nd in KCl-NaCl melt respectively is first made by means of a see-through cell.It is found that black metal fog is formed as the... Visual observations on dissolution of La in LaCl_3-KCl and Nd in NdCl_3-KCl as well as La,Nd in KCl-NaCl melt respectively is first made by means of a see-through cell.It is found that black metal fog is formed as the dissolution of La,Nd in their melts.There is a little resistance to the dissolution and diffusion of La and Nd into their halide melts under electrolysis.The dissolution and diffusion rate of Nd in its halide melt is mt(?)h faster than that of La.The metal fog of La and Nd consists mainly of their lower valence ions and partially of metal particles. 展开更多
关键词 LA ND Chloride melt Dissolution behaviour See through cell
下载PDF
Wear resistance of surface metal matrix composite produced by gas tungsten arc melt injection of Cr3C2 -NiCr particles into low carbon steel
11
作者 刘爱国 武小娟 +1 位作者 孟凡玲 孙焕焕 《China Welding》 EI CAS 2012年第3期12-16,共5页
Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface... Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate. 展开更多
关键词 surface metal matrix composite Cr3 C2-NiCr gas tungsten arc melt injection wear resistance
下载PDF
Experimental Study on Wire Melting Control Ability of Twin-Body Plasma Arc
12
作者 Ruiying Zhang Fan Jiang Long Xue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期184-194,共11页
The twin-body plasma arc has the decoupling control ability of heat transfer and mass transfer,which is beneficial to shape and property control in wire arc additive manufacturing.In this paper,with the wire feeding s... The twin-body plasma arc has the decoupling control ability of heat transfer and mass transfer,which is beneficial to shape and property control in wire arc additive manufacturing.In this paper,with the wire feeding speed as a characteristic quantity,the wire melting control ability of twin-body plasma arc was studied by adjusting the current separation ratio(under the condition of a constant total current),the wire current/main current and the position of the wire in the arc axial direction.The results showed that under the premise that the total current remains unchanged(100 A),as the current separation ratio increased,the middle and minimum melting amounts increased approximately synchronously under the effect of anode effect power,the first melting mass range remained constant;the maximum melting amount increased twice as fast as the middle melting amount under the effect of the wire feeding speed,and the second melting mass range was expanded.When the wire current increased,the anode effect power and the plasma arc power were both factors causing the increase in the wire melting amount;however,when the main current increased,the plasma arc power was the only factor causing the increase in the wire melting amount.The average wire melting increment caused by the anode effect power was approximately 2.7 times that caused by the plasma arc power.The minimum melting amount was not affected by the wire-torch distance under any current separation ratio tested.When the current separation ratio increased and reached a threshold,the middle melting amount remained constant with increasing wire-torch distance.When the current separation ratio continued to increase and reached the next threshold,the maximum melting amount remained constant with the increasing wire-torch distance.The effect of the wire-torch distance on the wire melting amount reduced with the increase in the current separation ratio.Through this study,the decoupling mechanism and ability of this innovative arc heat source is more clearly. 展开更多
关键词 Twin-body plasma arc melting control ability melting amount Current separation ratio
下载PDF
Melting points of ionic liquids:Review and evaluation
13
作者 Zhengxing Dai Lei Wang +1 位作者 Xiaohua Lu Xiaoyan Ji 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第12期1802-1811,共10页
The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in... The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in melting points.In addition,the factors that affect the melting point of ILs from macro,micro,and thermodynamic perspectives were summarized and analyzed.Then the development of the quantitative structure-property relationship(QSPR),group contribution method(GCM),and conductor-like screening model for realistic solvents(COSMO-RS)for predicting the melting points of ILs were reviewed and further analyzed.Combined with the evaluation together with the preliminary study conducted in this work,it shows that COSMO-RS is more promising and possible to further improve its performance,and a framework was thus proposed. 展开更多
关键词 Ionic liquids melting point COSMO-RS QSPR GCM
下载PDF
Experimental study on reactions between alkaline basaltic melt and orthopyroxenes: constraints on the evolution of lithospheric mantle in the North China Craton
14
作者 Hanqi He Mingliang Wang Hongfeng Tang 《Acta Geochimica》 EI CAS CSCD 2024年第2期354-365,共12页
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar... The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene. 展开更多
关键词 Alkaline basaltic melt ORTHOPYROXENE melt–mineral reaction High-temperature and high-pressure experiment Genesis of basalt Evolution of lithospheric mantle in the North China Craton
下载PDF
Melting geodynamics reveals a subduction origin for the Purang ophiolite,Tibet,China
15
作者 Tao Ruan Zhong-Jie Bai +1 位作者 Wei-Guang Zhu Shi-Ji Zheng 《Acta Geochimica》 EI CAS CSCD 2024年第4期754-773,共20页
The debate regarding whether the Yarlung-Zangbo ophiolite(YZO)on the south of the Qinghai-Tibet Plateau,formed in a mid-ocean ridge(MOR)or a supra-subduction zone(SSZ)setting has remained unresolved.Here we present pe... The debate regarding whether the Yarlung-Zangbo ophiolite(YZO)on the south of the Qinghai-Tibet Plateau,formed in a mid-ocean ridge(MOR)or a supra-subduction zone(SSZ)setting has remained unresolved.Here we present petrological,mineralogical,and geochemical data associated with modeling melting geodynamics of the mantle peridotites from the Purang ophiolite in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)to explore its tectonic environment.The Purang lherzolites are characterized by the protogranular texture and have abyssal-peridotite-like mineral compositions,including low Cr^(#)(20-30)and TiO_(2) contents(<0.1wt%)in spinel,high Al_(2)O_(3)(2.9wt%-4.4wt%)and CaO(1.9wt%-3.7wt%)contents in orthopyroxene and LREE-depletion in clinopyroxene.Compositions of these lherzolites can be modeled by~11%dynamic melting of the DMM source with a small fraction of melt(~0.5%)entrapped within the source,a similar melting process to typical abyssal peridotites.The Purang harzburgites are characterized by the porphyroclastic texture and exhibit highly refractory mineral compositions such as high spinel Cr^(#)(40-68),low orthopyroxene Al_(2)O_(3)(<2.2wt%)and CaO(<1.1wt%)contents.Clinopyroxenes in these harzburgites are enriched in Sr(up to 6.0 ppm)and LREE[(Ce)N=0.02-0.4],but depleted in Ti(200 ppm,on average)and HREE[(Yb)N<2].Importantly,the more depleted samples tend to have higher clinopyroxene Sr and LREE contents.These observations indicate an open-system hydrous melting with a continuous influx of slab fluid at a subduction zone.The modeled results show that these harzburgites could be formed by 19%-23%hydrous melting with the supply rate of slab fluid at 0.1%-1%.The lower clinopyroxene V/Sc ratios in harzburgites than those in lherzolites suggest a high oxidation stage of the melting system of harzburgites,which is consistent with a hydrous melting environment for these harzburgites.It is therefore concluded that the Purang ophiolite has experienced a transformation of tectonic setting from MOR to SSZ. 展开更多
关键词 melting geodynamics SSZ peridotites MOR peridotites CLINOPYROXENE Purang ophiolite
下载PDF
Stability and melting behavior of boron phosphide under high pressure
16
作者 梁文嘉 向晓君 +2 位作者 李倩 梁浩 彭放 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期579-584,共6页
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s... Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices. 展开更多
关键词 boron phosphide STABILITY melting curve high pressure
下载PDF
High-strength and thermally stable TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy fabricated via selective laser melting
17
作者 Jiang Yu Yaoxiang Geng +6 位作者 Yongkang Chen Xiao Wang Zhijie Zhang Hao Tang Junhua Xu Hongbo Ju Dongpeng Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2221-2232,共12页
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders... To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles. 展开更多
关键词 selective laser melting aluminum alloy PROCESSABILITY mechanical properties thermal stability
下载PDF
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
18
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy Processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Effect of Cryogenic Treatment on Microstructure and Tribological Property Evolution of Electron Beam Melted Ti6Al4V
19
作者 黄西娜 MA Xiaowen XU Tianyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1010-1017,共8页
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi... Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V. 展开更多
关键词 electron beam melting(EBM) cryogenic treatment MICROSTRUCTURE vickers hardness tribological property
下载PDF
Microstructure and Oxidation Behavior of ZrB_(2)-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration
20
作者 TAN Min CHEN Xiaowu +5 位作者 YANG Jinshan ZHANG Xiangyu KAN Yanmei ZHOU Haijun XUE Yudong DONG Shaoming 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第8期955-964,共10页
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to... ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics. 展开更多
关键词 ultra-high temperature ceramic ZRB2-SIC oxidation behavior reactive melt infiltration
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部