期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Electrochemical hydrogen storage characteristics of La_(0.75-x) M_xMg_(0.25)Ni_(3.2)Co_(0.2)Al_(0.1)(M=Zr,Pr;x=0,0.1) alloys prepared by melt spinning 被引量:7
1
作者 ZHANG Yanghuan YANG Tai +3 位作者 CAI Ying HOU Zhonghui REN Huiping ZHAO Dongliang 《Rare Metals》 SCIE EI CAS CSCD 2012年第5期-,共9页
In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology ... In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology was used to fabricate the La_(0.75-x)M_xMg_0.25Ni_3.2Co_0.2Al_0.1 (M = Zr, Pr; x = 0, 0.1) electrode alloys. The influences of the melt spinning and substituting La with M (M = Zr, Pr) on the structures and the electrochemical hydrogen storage characteristics of the alloys were investigated. The analysis of XRD, SEM, and TEM reveals that the as-cast and spun alloys have a multiphase structure composed of two main phases (La, Mg)_2Ni_7 and LaNi_5 as well as a residual phase LaNi_2 . The as-spun (M = Pr) alloy displays an entire nanocrystalline structure, while an amorphous-like structure is detected in the as-spun (M = Zr) alloy, implying that the substitution of Zr for La facilitates the amorphous formation. The electrochemical measurements exhibit that the substitution of Pr for La clearly increases the discharge capacity of the alloys; however, the Zr substitution brings on an adverse impact. Meanwhile, the M (M = Zr, Pr) substitution significantly enhances its cycle stability. The melt spinning exerts an evident effect on the electrochemical performances of the alloys, whose discharge capacity and high rate discharge ability (HRD) first mount up and then fall with the growing spinning rate, whereas their cycle stabilities monotonously augment as the spinning rate increases. 展开更多
关键词 A_2B_7-type electrode alloy element substitution melt spinning electrochemical performance
下载PDF
Texture Evolution in Nanocomposite Nd_2Fe_(140B/α-Fe Magnets Prepared by Direct Melt Spinning 被引量:1
2
作者 王占勇 徐晖 +2 位作者 倪建森 金红明 周邦新 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期298-301,共4页
Texture evolution in nanocomposite Nd_2Fe_ 14B/α-Fe magnets prepared by direct melt spinning was investigated. The free surface and wheel-contacted surface exhibit different texture direction. Modification of composi... Texture evolution in nanocomposite Nd_2Fe_ 14B/α-Fe magnets prepared by direct melt spinning was investigated. The free surface and wheel-contacted surface exhibit different texture direction. Modification of composition not only enhances magnetic properties, but also changes texture direction of the ribbon. Low temperature heat treatment can increase the magnetic properties to some extent, and high temperature annealing decreases the magnetic properties. Both low and high temperature heat treatment have effects on grain orientation, but the difference still exists between the two surfaces of the ribbon. So it is infeasibility to prepare anisotropic Nd_2Fe_ 14B/α-Fe nanocomposite magnets by direct melt spinning. 展开更多
关键词 nanocomposite magnet Nd_2Fe_ 14B/α-Fe melt spinning anisotropic magnets rare earths
下载PDF
OBTAINING THE CRITICAL DRAW RATIO OF DRAW RESONANCE IN MELT SPINNING FOR POWER LAW POLYMER FLUIDS
3
作者 Jinan Cao 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2007年第5期501-507,共7页
A direct difference method has been developed for Non-Newtonian power law fluids to solve the simultaneous non-linear partial differential equations of melt spinning, and to determine the critical draw ratio for draw ... A direct difference method has been developed for Non-Newtonian power law fluids to solve the simultaneous non-linear partial differential equations of melt spinning, and to determine the critical draw ratio for draw resonance. The results show that for shear thin fluids, the logarithm of the critical draw ratio has a well defined linear relationship with the power index for isothermal and uniform tension melt spinning. When the power index approaches zero, the critical draw ratio points at unity, indicating no melt spinning can be processed stably for such fluids. For shear thick fluids, the critical draw ratio increases in a more rapid way with increasing the power index. 展开更多
关键词 Draw resonance melt spinning Power law fluid Numerical simulation.
下载PDF
MORPHOLOGY OF MELT SPINNING SUPERSATURATED B2 NiAl
4
作者 SUN Baode CHE Xiaozhou +1 位作者 LIN Dongliang ZHOU Yaohe(Department of Materials Engineering,Shanghai Jiaotong University,Shanghai 20030,China)(Department of Materials Science,Shanghai Jiaotong University,Shanghai 200030,China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第2期89-93,共5页
The morphology and structure of melt spinning Ni-33.6at% Al doped with B and RE were investigated.The results show that the alloy consists of L10 martensitic grains and L12 Ni3Al at the grain boundaries when it contai... The morphology and structure of melt spinning Ni-33.6at% Al doped with B and RE were investigated.The results show that the alloy consists of L10 martensitic grains and L12 Ni3Al at the grain boundaries when it contains no B and RE.The addition of 0.11-0.31wt% B can suppress the martensitic transformation and Ni3Al separation at the boundaries,and a supersaturated B2 single phase NiAl is obtained.The addition of 0.05wt% RE can eliminate Ni3Al precipitated at the boundaries and get complete martensite,but 0.2-0.8wt% RE addition can suppress the martensitic transformation, and supersaturated B2 single phase NiAl is obtained.The formation mechanism of supersaturated B2 single phase NiAl has been analyzed. 展开更多
关键词 NiAl supersaturate morphologl melt spinning
下载PDF
Structures and electrochemical performances of RE-Mg-Ni-Mn-based alloys prepared by casting and melt spinning 被引量:7
5
作者 张羊换 杨泰 +3 位作者 蔡颖 胡锋 祁焱 赵栋梁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第12期1241-1251,共11页
La-Mg-Ni-Mn-based AB2-type La(1–x)CexMgNi(3.5)Mn(0.5)(x=0–0.4) alloys were prepared by melt spinning technology. The detections of X-ray diffraction(XRD) and scanning electron microscopy(SEM) indicated t... La-Mg-Ni-Mn-based AB2-type La(1–x)CexMgNi(3.5)Mn(0.5)(x=0–0.4) alloys were prepared by melt spinning technology. The detections of X-ray diffraction(XRD) and scanning electron microscopy(SEM) indicated that the experimental alloys consisted of a major phase LaMgNi4 and a secondary phase LaNi5. With spinning rate growing, the abundance of LaMgNi4 phase increased and that of LaNi5 phase decreased. Moreover, with the melt spinning rate increasing, both the lattice constants and cell volumes increased, and further accelerated the grains refinement of the alloys. The electrochemical tests showed that the as-spun alloys possessed excellent capability of activation, achieving the maximum discharge capacities just at the first cycling without any activation needed. As for the as-spun alloys, its discharge potential characteristics could be improved obviously by adopting the technology of melt spinning. In addition, the melt spinning raised electrochemical cycle stability of the alloys, the main reason was that the melt spinning enhanced the anti-pulverization ability of the alloys. With spinning rate increasing, the discharge capacity of the alloys presented a tendency to increase firstly then decrease. Moreover, the electrochemical kinetics of the alloys showed the same trend under fixed condition. 展开更多
关键词 AB2-type alloy Ce substitution for La melt spinning electrochemical performance KINETICS rare earths
原文传递
A Comparison Study of Hydrogen Storage Thermodynamics and Kinetics of YMg11Ni Alloy Prepared by Melt Spinning and Ball Milling 被引量:3
6
作者 Yang-Huan Zhang Wei Zhang +3 位作者 Jin-Liang Gao Ze-Ming Yuan Wen-Gang Bu Yan Qi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第11期1040-1048,共9页
Melt spinning (MS) and ball milling (BM) were employed to fabricate YMg11Ni alloy, and their structures and hydrogen storage performances were examined. The results reveal that the as-spun and as-milled alloys bot... Melt spinning (MS) and ball milling (BM) were employed to fabricate YMg11Ni alloy, and their structures and hydrogen storage performances were examined. The results reveal that the as-spun and as-milled alloys both exhibit the nanocrystalline and amorphous structure. The as-milled alloy shows a larger hydrogen absorption capacity as compared with the as-spun alloy. More than that, the as-milled alloy exhibits lower onset hydrogen desorption temperature than the as-spun one, which are 549.8 and 560.9 K, respectively. Additionally, the as-milled alloy shows a superior hydrogen desorption property to the as-spun one. On the basis of the time needed by desorbing hydrogen of 3 wt% H2, for the as- milled alloy, it needs 1106, 456, 343, and 180 s corresponding to hydrogen desorption temperatures of 593, 613, 633, and 653 K. However, for the as-spun alloy, the time needed is greater than 2928, 842, 356, and 197 s corresponding to the same temperatures. Hydrogen desorption activation energies of as-milled and as-spun alloys are 98.01 and 105.49 kJ/mol, respectively, which is responsible for that the as-milled alloy possesses a much faster dehydriding rate. By means of the measurement of pressure-composition-temperature (P-C-T) curves, the dehydrogenation enthalpy change of the alloys prepared by MS (△Hoe(MS)) and BM (△Hdc(BM)) is 81.84 and 79.46 kJ/mol, respectively, viz. △Hde(MS) 〉 △Hoc(BM). 展开更多
关键词 Mg-based alloy Ball milling melt spinning Hydrogen storage kinetics Comparison
原文传递
Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method 被引量:2
7
作者 Xu-Chao Wang Ming Yue +2 位作者 Dong-Tao Zhang Wei-Qiang Liu Ming-Gang Zhu 《Rare Metals》 SCIE EI CAS CSCD 2020年第10期1145-1150,共6页
The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built,and the vacuum chamber,cooling roller and sample were taken into account as a system.The existing matu... The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built,and the vacuum chamber,cooling roller and sample were taken into account as a system.The existing mature technology was in order to verify the correctness of simulation.The rapid quenching ribbons with different roll speeds were used as the simulation objects.The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained.The experimental thickness of the ribbons is proportional to the theoretical thickness.In the same spray condition,with the roll speed increasing,the thickness decreases linearly.At the speed range of25-30 m·s^(-1),the simulated calculation date is close to the experimental date,which can be considered as an ideal technological parameter. 展开更多
关键词 NDFEB melt spinning Finite element method Numerical simulation
原文传递
Preparation and Magnetic Properties of Melt-Spinning Nd_2Fe_(14)B/α-Fe Nanocomposite Magnets 被引量:1
8
作者 王伟 倪建森 +3 位作者 徐晖 周邦新 李强 王占勇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第4期505-508,共4页
Nd_(11)Fe_(71)Co_8V_(1.5)Cr_1B_(7.5) magnet was prepared by melt-spinning and subsequently annealed. The effects of the wheel speed on the magnetic properties and microstructure were studied. The results reveal that f... Nd_(11)Fe_(71)Co_8V_(1.5)Cr_1B_(7.5) magnet was prepared by melt-spinning and subsequently annealed. The effects of the wheel speed on the magnetic properties and microstructure were studied. The results reveal that fine nanocomposite microstructure consisting of Nd_2Fe_(14)B and α-Fe phases can be developed at an optimum wheel speed of about 21 m·s^(-1). After optimal annealing (640 ℃×4 min), magnetic properties of B_r=0.64 T, (()_jH_c)=903.5 kA·m^(-1) and (BH)_(max)=71 (kJ·m^(-3)) were obtained for the bonded magnets. The addition of Cr element significantly reduces grain size, increasing the intrinsic coercivity and maximum magnetic energy product. 展开更多
关键词 nanocomposite magnets melt spinning exchange coupling rare earths
下载PDF
Highly Improved Gaseous Hydrogen Storage Characteristics of the Nanocrystalline and Amorphous Nd-Cu-added Mg_2Ni-type Alloys by Melt Spinning
9
作者 Yanghuan Zhang Tingting Zhai +3 位作者 Baowei Li Huiping Ren Wengang Bu Dongliang Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第10期1020-1026,共7页
The nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of (Mg24Ni10Cu2)loo-xNdx (x = 0-20) were prepared by melt spinning. The X-ray diffraction and transmission electron microscopy ins... The nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of (Mg24Ni10Cu2)loo-xNdx (x = 0-20) were prepared by melt spinning. The X-ray diffraction and transmission electron microscopy inspections reveal that, by varying the spinning rate and the Nd content, different microstructures could be obtained by melt spinning. Particularly, the as-spun Nd-free alloy holds an entire nanocrystalline structure but the as-spun Nd-added alloy has a nanocrystalline and amorphous structure, which implies that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. Also, the degree of the amorphization in the as-spun Nd-added alloys clearly increases with increasing the spinning rate and the Nd content. The H-storage capacity and the hydrogenation kinetics of amorphous, partially and completely nanocrystalline alloys were investigated and it was found that they are dependent on the microstructure and the phase composition of the alloys. Specially, enhancing the spinning rate from 0 (the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s makes the hydrogen absorption saturation ratio (R5a) (a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increase from 35.2% to 90.3% and the hydrogen desorption ratio (R10d) (a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rise from 12.7% to 44.9% for the (x = 5) alloy. And the growing of the Nd content from 0 to 20 gives rise to the R5a and R10d values rising from 85.7% to 94.5% and from 36.7% to 54.8% for the as-spun (30 m/s) alloys, respectively. 展开更多
关键词 Mg2Ni-type alloy Nd addition melt spinning STRUCTURES Hydrogen storage
原文传递
High-performance α-Fe/Pr_2Fe_(14)B-type nanocomposite magnets fabricated by direct melt spinning
10
作者 杨白 张蕾 +2 位作者 沈保根 赵同云 于荣海 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第1期49-53,共5页
High-performance α-Fe/Pr2FelnB-type nanocomposite magnets based on the compositions of PrsFes6B6 microalloyed with Co, Nb and C were fabricated by direct melt spinning. The coercivity was greatly improved from 5.5 kO... High-performance α-Fe/Pr2FelnB-type nanocomposite magnets based on the compositions of PrsFes6B6 microalloyed with Co, Nb and C were fabricated by direct melt spinning. The coercivity was greatly improved from 5.5 kOe for the Pr8Fe86B6 ribbons to 7.4 kOe for the Pr8Fe85NbB5C ribbons. The balanced high coercivity and remanence were obtained in Pr8Fe75Co10NbB5C ribbons due to the Co substitution for Fe, which led to the significant improvement of magnetic properties in these ribbons. A remanence ratio of 0.82, a coercive field of 6.6 kOe and a maximum energy product of 26.2 MGOe in melt-sptm Pr8Fe75Co10NbB5C ribbons were ob- tained at room temperature. 展开更多
关键词 high-performance α-Fe/Pr2Fe14B-type nanocomposite magnets melt spinning magnetic properties rare earths
原文传递
Melt-Spinning of Nano-Hydroxyapatite/Poly(ε-caprolactone)Composite Fibers for Potential Application in Bone Tissue Engineering
11
作者 陈培峰 王富军 +2 位作者 王璐 丁雯 赵健安 《Journal of Donghua University(English Edition)》 EI CAS 2017年第6期726-729,共4页
Nano-hydroxyapatite/poly( ε-caprolactone)( n HA/PCL)composite materials are among the best candidates for application in bone tissue engineering. As the main technique to fabricate porous scaffolds, electrospinning p... Nano-hydroxyapatite/poly( ε-caprolactone)( n HA/PCL)composite materials are among the best candidates for application in bone tissue engineering. As the main technique to fabricate porous scaffolds, electrospinning produce scaffolds with unsatisfactory mechanical strength and limited pore size for cell infiltration.Micron-sized fiber assembly with higher mechanical strength is qualified to structure hybrid scaffolds. In this study, n HA/PCL monofilament fibers with different mass ratios were fabricated through melt-spinning. Transmission electron microscope( TEM)was used to observe the aggregation between n HA particles. Other characterizations including scanning electron microscopy( SEM),attenuated total reflection Fourier transform infrared spectroscopy( ATR-FTIR) and X-ray diffraction( XRD) were done to discuss the morphology, components and crystallization of the n HA/PCL composite fibers, respectively. The influence of n HA/PCL mass ratio on the tensile properties and water contact angle of composite fibers was also studied. The SEM images show the homogeneous dispersion of nano particles in the polymer matrix. Besides,n HA content increases the tensile strength, initial modulus and hydrophilicity of the composite fibers under the premise of spinnability. This kind of fibers is strong enough to fabricate fiber assembly which may have potential application in bone tissue engineering. 展开更多
关键词 nano-hydroxyapatite(n HA) poly(ε-caprolactone)(PCL) melt spinning tensile properties
下载PDF
A comparison study of hydrogen storage performances of SmMg_(11)Ni alloys prepared by melt spinning and ball milling
12
作者 Yanghuan Zhang Meng Ji +4 位作者 Zeming Yuan Jingliang Gao Yan Qi Xiaoping Dong Shihai Guo 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第4期409-417,共9页
The melt spinning(MS) and ball milling(BM) technologies are thought to be efficient to prepare nanostructured Mg and Mg-based alloys for improving their hydrogen storage performances. In this paper, two technologi... The melt spinning(MS) and ball milling(BM) technologies are thought to be efficient to prepare nanostructured Mg and Mg-based alloys for improving their hydrogen storage performances. In this paper, two technologies, viz. melt spinning and ball milling, were employed to fabricate the SmMg_(11)Ni alloy. The structure and hydrogen storage performance of these two kinds of alloys were researched in detail. The results reveal that the as-spun and milled alloys both contain nanocrystalline and amorphous structures. By means of the measurement of PCT curves, the thermodynamic parameters of the alloys prepared by MS and BM are ΔN_(Ms)(des) = 82.51 kJ/mol and ΔH_(BM)(des) = 81.68 kJ/mol, respectively, viz.ΔH_(MS)(des) 〉 ΔH_(BM)(des). The as-milled alloy shows a larger hydrogen absorption capacity as compared with the as-spun one. The as-milled alloy exhibits lower onset hydrogen desorption temperature than the as-spun one. As to the as-milled and spun alloys, the onset hydrogen desorption temperatures are557.6 and 565.3 K, respectively. Additionally, the as-milled alloy shows a superior hydrogen desorption property than the as-spun one. On the basis of time that required by desorbing hydrogen of 3 wt% H_2, the as-milled alloy needs 1488.574,390 and 192 s corresponding to hydrogen desorption temperatures 593,613,633 and 653 K, while the as-spun alloy needs 3600,1020,778 and 306 s corresponding to the same temperatures. The dehydrogenation activation energies of the as-milled and spun alloys are 100.31 and105.56 kJ/mol, respectively, the difference of which is responsible for the much faster dehydriding rate of the as-milled alloy. 展开更多
关键词 Mg-based alloy melt spinning Ball milling Hydrogen storage kinetics Comparison Rare earths
原文传递
Microstructure and Electrochemical Characteristics of Melt-Spinning Alloy Ml(NiCoMnAl)_5
13
作者 WEN Ming fen 1,2 , CHEN Lian 1, TONG Min 1, CHEN De min 1, ZHAI Yu chun 2 ( 1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China 2. Department of Materials and Metallurgy, Northeastern University, Shenyang 11000 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第1期80-80,共1页
The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies sh... The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies show that the microstructure of melt spinning alloys is columnar structure. With increasing melt spinning rate, the crystal grains become finer and preferentially grow along (111)[111] direction. The melt spinning and cast alloys belong to CaCu 5 type hexagonal crystal structure. The electrochemical measurements show that the initial capacities of melt spinning alloy electrodes are all above 210 mAh·g -1 with good activation behavior, reaching their maximum capacities after two charge discharge cycles. The maximum capacity (294 mAh·g -1 ) of melt spinning (10 m·s -1 ) alloy electrodes is as the same as that of as cast alloy electrode, and stability of charge discharge cycles of all melt spinning alloy electrodes is better than that of the as cast alloy electrodes. When charged at 600 mA·g -1 , the capacity of melt spinning (10 m·s -1 ) alloy electrode could reach 65% of its maximum capacity about 45 min with high rate discharge capability; but with the cycle number increasing, the stability of its capacity is less than that electrodes of melt spinning rate. 展开更多
关键词 rare earths melt spinning method hydrogen storage alloy electrode electrochemical characteristics columnar structure
下载PDF
Controllable large-scale processing of temperature regulating sheath-core fibers with high-enthalpy for thermal management
14
作者 Ziye Chen Zexu Hu +4 位作者 Shining Chen Senlong Yu Liping Zhu Hengxue Xiang Meifang Zhu 《Nano Materials Science》 EI CAS CSCD 2024年第3期337-344,共8页
Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at ... Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRF_(s) with excellent thermal and mechanical properties. Here, polyamide 6(PA6) based TRF_(s) with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF(TRF_(sc)) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials(ssPCM),dendritic silica@polyethylene glycol(SiO_(2)@PEG). With the aid of the sheath structure, the filling content of SiO_(2)@PEG can reach 30 %, so that the enthalpy of the TRF_(s) can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93℃. In addition, the mechanical strength of the prepared TRF_(sc)reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc. 展开更多
关键词 Thermal management Hybrid fibers Polyamides Bicomponent melt spinning Temperature regulating fibers
下载PDF
OBTAINING PRECISE CRITICAL DRAW RATIO OF DRAW RESONANCE IN MELT SPINING BY NUMERICAL SIMULATION OF DIFFERENCE EQUATIONS
15
作者 Ji-nanCao 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第3期311-318,共8页
Direct difference methods have been used to solve the simultaneous non-linear partial differential equations formelt spinning without recourse to linearisation or perturbation approximation.The stability of each diffe... Direct difference methods have been used to solve the simultaneous non-linear partial differential equations formelt spinning without recourse to linearisation or perturbation approximation.The stability of each difference schemes wasstudied by error analysis using the Taylor series,and by comparison of the results obtained from numerical simulation withthe logical value in melt spinning.It is found that computation with 19 digit long double precision has significantlysimplified the stability problem of difference equations.Using this method,the precise critical draw ratio of draw resonancein an isothermal and uniform tension spinning of Newtonian fluids can be obtained in between 20.218 and 21.219,a figureconsistent with 20.218 which was obtained by a linear perturbation approximation method by Kase and Denn.It thus haspaved the way to computation of full information for unsteady melt spinning processes using the difference method. 展开更多
关键词 Draw resonance melt spinning Newtonian fluid Numerical simulation.
下载PDF
ANISOTROPY IN Nd_(12)Fe_(77)Co_5B_6 MELT SPUN FLAKES
16
作者 J. Han , Y.S. Wang , Y.D. Gao, W.L. Guo and B.C. Liu Beijing Institute of Aeronautical Materials,Beijing 100095 ,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第4期433-435,共3页
Alloyof composition Nd12 Fe77 Co5 B6 was melt spun into flakes and then annealed. The magnetic propertiesandthe microstructureoftheflakesand powders were analyzed via VSMdemagnetization curves and XRDpatterns. New p... Alloyof composition Nd12 Fe77 Co5 B6 was melt spun into flakes and then annealed. The magnetic propertiesandthe microstructureoftheflakesand powders were analyzed via VSMdemagnetization curves and XRDpatterns. New phenomenon that anisotropy existsin an nealed flakes wasfounded. Theorientationofthetextureparallelstothec axisthatistheeasy magnetization axisof Nd Fe B typecrystal.Itisveryusefulfor manufacturing high perfor mancebonded magnets with good magneticandtemperature properties. 展开更多
关键词 Nd Fe B magnet ANISOTROPY melt spin ANNEAL
下载PDF
Effect of high magnetic field on the crystallization of Nd_2Fe_(14)B/α-Fe nanocomposite magnets 被引量:6
17
作者 WANG Zhanyong XU Hui +2 位作者 NI Jiansen LI Qiang ZHOU Bangxin 《Rare Metals》 SCIE EI CAS CSCD 2006年第4期337-341,共5页
Nd8.1Dy0.9Fe76.95Co8.55B5.5 nanocomposite magnets annealed with and without a 10 T magnetic field were investigated in this article. The ribbons with coexisting amorphous and crystalline phases were selected to do thi... Nd8.1Dy0.9Fe76.95Co8.55B5.5 nanocomposite magnets annealed with and without a 10 T magnetic field were investigated in this article. The ribbons with coexisting amorphous and crystalline phases were selected to do this study. The resuits of Moessbauer spectroscopy revealed that the content of α--Fe increased when annealed in high strength magnetic field. The size of the grains also increased considerably after the application of magnetic annealing. All these led to the decrease of the magnetic properties, especially the coercivity of the ribbons. 展开更多
关键词 magnetic materials nanocomposite magnet CRYSTALLIZATION magnetic field melt spinning
下载PDF
Lignin-based carbon fibers: Formation, modification and potential applications 被引量:5
18
作者 Shichao Wang Jixing Bai +4 位作者 Mugaanire Tendo Innocent Qianqian Wang Hengxue Xiang Jianguo Tang Meifang Zhu 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期578-605,共28页
As an aromatic polymer in nature, lignin has recently attracted gross attention because of its advantages of high carbon content, low cost and bio-renewability. However, most lignin is directly burnt for power generat... As an aromatic polymer in nature, lignin has recently attracted gross attention because of its advantages of high carbon content, low cost and bio-renewability. However, most lignin is directly burnt for power generation to satisfy the energy demand of the pulp mills. As a result, only a handful of isolated lignin is used as a raw material. Thus, increasing value addition on lignin to expand its scope of applications is currently a challenge demanding immediate attention. Many efforts have been made in the valorization of lignin, including the preparation of precursors for carbon fibers. However, its complex structure and diversity significantly restrict the spinnability of lignin. In this review, we provide elaborate knowledge on the preparation of lignin-based carbon fibers ranging from the relationships among chemical structures, formation conditions and properties of fibers, to their potential applications. Specifically, control procedures for different spinning methods of lignin, including melt spinning, solution spinning and electrospinning, together with stabilization and carbonization are deeply discussed to provide an overall understanding towards the formation of lignin-based carbon fibers. We also offer perspectives on the challenges and new directions for future development of lignin-based carbon fibers. 展开更多
关键词 Lignin-based carbon fiber melt spinning Solution spinning ELECTROspinning
下载PDF
Microstructural evolution and mechanical properties of nanostructured Cu-Al-Ni shape memory alloys 被引量:2
19
作者 M. Izadinia K. Dehghani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期333-338,共6页
The melt spinning technique, with an applied cooling rate of about 106 K/s, was used to produce a nanostructured Cu+13.2Al+ 5.1Ni (in wt%) shape memory alloy. The properties of nanostructured ribbons were then com... The melt spinning technique, with an applied cooling rate of about 106 K/s, was used to produce a nanostructured Cu+13.2Al+ 5.1Ni (in wt%) shape memory alloy. The properties of nanostructured ribbons were then compared with those of conventional coarse struc- ture. The microstructural evolution was characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. Microhardness measurements indicate a two-fold increase in hardness because of the produced nanos- lructure. Comparing to its coarse structure, the nanostructured Cu-A1-Ni shape memory alloy exhibited the enhanced mechanical properties including a ductility of 6.5% and a pronounced plateau in the stress-strain curve. 展开更多
关键词 copper allosy shape memory effect melt spinning mechanical properties microstructural evolution
下载PDF
Crystallization and Microstructure Evolution of Amorphous Al_(85)Y_4Nd_4Fe_7 Alloy 被引量:2
20
作者 陈元喜 陈翌庆 +3 位作者 苏勇 胡磊 吴炜 李公普 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第1期77-80,共4页
A rapidly solidified Al_(85)Y_4Nd_4Fe_7 (%, in nominal atomic fraction) alloy was prepared by melt spinning. As-quenched and as-annealed microstructures were studied by differential scanning calorimetry (DSC), X-ray d... A rapidly solidified Al_(85)Y_4Nd_4Fe_7 (%, in nominal atomic fraction) alloy was prepared by melt spinning. As-quenched and as-annealed microstructures were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Fully amorphous structure could be obtained in the rapidly solidified Al_(85)Y_4Nd_4Fe_7 alloy ribbons. The temperature of first crystallization exceeds 300 ℃. Crystallization of as-annealed Al_(85)Y_4Nd_4Fe_7 alloy is shown to occur in two stages: (1) primary crystallization of α-Al; (2) formation of Al_3Y, Al_(13)Fe_4 and unknown crystalline phases. 展开更多
关键词 melt spinning amorphous alloys Al-Y-Nd-Fe alloy rare earths
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部