期刊文献+
共找到1,954篇文章
< 1 2 98 >
每页显示 20 50 100
Strength and plasticity improvement induced by strong grain refinement after Zr alloying in selective laser-melted AlSiMg1.4 alloy
1
作者 Yao-xiang GENG Chun-feng ZAI +3 位作者 Jiang YU Hao TANG Hong-wei LÜ Zhi-jie ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2733-2742,共10页
In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech... In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM. 展开更多
关键词 selective laser melting process stability grain refinement microstructure mechanical properties
下载PDF
Effect of Cryogenic Treatment on Microstructure and Tribological Property Evolution of Electron Beam Melted Ti6Al4V
2
作者 黄西娜 MA Xiaowen XU Tianyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1010-1017,共8页
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi... Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V. 展开更多
关键词 electron beam melting(EBM) cryogenic treatment MICROSTRUCTURE vickers hardness tribological property
下载PDF
Crack elimination and strength enhancement mechanisms of selective laser melted Si-modified Al−Mn−Mg−Er−Zr alloy
3
作者 Jiang YU Yao-xiang GENG +2 位作者 Hong-bo JU Zhi-jie ZHANG Jun-hua XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2431-2441,共11页
In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the sur... In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys. 展开更多
关键词 selective laser melting Al−Mn−Mg−Er−Zr−Si alloy surface roughness PROCESSABILITY mechanical properties
下载PDF
Selective laser melted AZ91D magnesium alloy with superior balance of strength and ductility 被引量:1
4
作者 Xinzhi Li Xuewei Fang +3 位作者 Shuaipeng Wang Siqing Wang Min Zha Ke Huang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4644-4658,共15页
In the context of global carbon neutrality, the application of lightweight magnesium alloys is becoming increasingly attractive. In this study, selective laser melting(SLM) was employed to achieve nearly full dense an... In the context of global carbon neutrality, the application of lightweight magnesium alloys is becoming increasingly attractive. In this study, selective laser melting(SLM) was employed to achieve nearly full dense and crack-free AZ91D components with fine equiaxed grain structure. The formation mechanism of typical pore defects(gas pore, lack-of-fusion pore and keyhole pore) and melting modes(keyhole mode and conduction mode) were systematically studied by varying the laser power and scanning speed. The morphology and volume fraction of the pores under different processing conditions were characterized. A criterion based on the depth-to-width ratio of the melt pool was established to identify different melting modes. The strength and ductility(tensile strength up to 340 MPa and uniform elongation of 8.9%)of the as deposited AZ91D are far superior to those of the casting components and are comparable to those of its wrought counterparts.The superior balance of strength and ductility of SLMed AZ91D, as well as the negligible anisotropic properties are mainly ascribed to the extremely fine equiaxed grain structure(with average grain size of ~1.2 μm), as well as the discontinuous distribution of β-Al_(12)Mg_(17) phases. It thus provides an alternative way to fabricate high-strength magnesium alloys with complex geometry. 展开更多
关键词 Magnesium alloy Selective laser melting Melting mode Defects Equiaxed grain structure Mechanical properties
下载PDF
Analysis of Key Technologies and Equipments Development of Largescale Melted Extrusion Manufacturing Systems
5
作者 Lei ZHANG Sheng CHEN Yongnian YAN Renji ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期215-217,共3页
To develop large-scale RP systems used to producing functional parts and large-sized models has become an urgentcall now. In this paper, a large-scale RP system, MEM600-l, based on the melted extrusion manufacturing (... To develop large-scale RP systems used to producing functional parts and large-sized models has become an urgentcall now. In this paper, a large-scale RP system, MEM600-l, based on the melted extrusion manufacturing (MEM)process has been developed successfully. And the key issues to develop such a system are discussed. Based on theactual forming experiment, it is concluded that the MEM600-l works reliably and the forming efficiency is muchhigher than its parallel equipments. 展开更多
关键词 melted EXTRUSION manufacturing LARGE-SCALE RP systems FORMING EFFICIENCY
下载PDF
Effect of Morphology of Instantaneous Inoculant on Inoculated Result of Melted Iron
6
作者 SHENG Da 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2003年第4期38-41,共4页
The characteristics of some elements in inoculant were analyzed.The effect of the morphology of instantaneous inoculant on its melting velocity was studied.When the inoculants pass through the same sieve number,the vo... The characteristics of some elements in inoculant were analyzed.The effect of the morphology of instantaneous inoculant on its melting velocity was studied.When the inoculants pass through the same sieve number,the volume and the ratio of surface area to volume are different.It is evident from the theoretical analysis and experiment under some conditions that the melting velocity of inoculant depends on the morphology of inoculant.The morphology of inoculant during production should be controlled carefully. 展开更多
关键词 instantaneous inoculant MORPHOLOGY melting velocity melted iron
下载PDF
Microstructure and electrochemical corrosion behavior of selective laser melted Ti−6Al−4V alloy in simulated artificial saliva 被引量:12
7
作者 Jiang JU Jing-jing LI +6 位作者 Min JIANG Meng-ya LI Li-xiang YANG Kai-ming WANG Chao YANG Mao-dong KANG Jun WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期167-177,共11页
Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron micros... Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃. 展开更多
关键词 Ti−6Al−4V alloy selective laser melting MICROSTRUCTURE electrochemical corrosion behavior
下载PDF
Effect of Trace Addition of Ceramic on Microstructure Development and Mechanical Properties of Selective Laser Melted AlSi10Mg Alloy 被引量:7
8
作者 Yuxin Li Dongdong Gu +1 位作者 Han Zhang Lixia Xi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期56-68,共13页
Selective laser melting(SLM)is an emerging additive manufacturing technology for fabricating aluminum alloys and aluminum matrix composites.Nevertheless,it remains unclear how to improve the properties of laser manufa... Selective laser melting(SLM)is an emerging additive manufacturing technology for fabricating aluminum alloys and aluminum matrix composites.Nevertheless,it remains unclear how to improve the properties of laser manufactured aluminum alloy by adding ceramic reinforcing particles.Here the effect of trace addition of TiB2 ceramic(1%weight fraction)on microstructural and mechanical properties of SLM-produced AlSi10Mg composite parts was investigated.The densification level increased with increasing laser power and decreasing scan speed.A near fully dense composite part(99.37%)with smooth surface morphology and elevated inter-layer bonding was successfully obtained.A decrease of lattice plane distance was identified by X-ray diffraction with the laser scan speed decreased,which implied that the crystal lattices were distorted due to the dissolution of Si and TiB2 particles.A homogeneous composite microstructure with the distribution of surface-smoothened TiB2 particles was present,and a small amount of Si particles precipitated at the interface between reinforcing particles and matrix.In contrast to the AlSi10Mg alloy,the composites showed a stabilized microhardness distribution.A higher ultimate tensile strength of 380.0 MPa,yield strength of 250.4 MPa and elongation of 3.43%were obtained even with a trace amount of ceramic addition.The improvement of tensile properties can be attributed to multiple mechanisms including solid solution strengthening,load-bearing strengthening and dispersion strengthening.This research provides a theoretical basis for ceramic reinforced aluminum matrix composites by additive manufacturing. 展开更多
关键词 Selective laser melting TIB2 Aluminum matrix composites Mechanical properties Strengthening mechanism
下载PDF
Densification,microstructural features and tensile properties of selective laser melted AlMgSiScZr alloy from single track to block specimen 被引量:5
9
作者 BI Jiang CHEN Yan-bin +2 位作者 CHEN Xi STAROSTENKOV M D DONG Guo-jiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1129-1143,共15页
The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good c... The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good corrosion resistance and high mechanical performance.In this paper,an Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy was fabricated via SLM.The characteristics of single track at different process parameters,and the influence of hatch spacing on densification,microstructural features and tensile properties of block specimens were systematically studied.The hatch spacing has an influence on the overlap ratio of single track,and further affects the internal forming quality of printed specimen.At a laser power of 160 W and scanning speed of 400 mm/s,the densification of block specimen increased first and then decreased with the increase of hatch spacing.The nearly full dense specimen(98.7%)with a tensile strength of 452 MPa was fabricated at a hatch spacing of 80μm.Typical characteristics of dimple and cleavage on the tensile fracture of the AlMgSiScZr alloy showed the mixed fracture of ductility and brittleness. 展开更多
关键词 selective laser melting aluminum alloy hatch spacing microstructural feature tensile properties
下载PDF
Interface microstructure and mechanical properties of selective laser melted multilayer functionally graded materials 被引量:5
10
作者 WANG Di DENG Guo-wei +4 位作者 YANG Yong-qiang CHEN Jie WU Wei-hui WANG Hao-liang TAN Chao-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1155-1169,共15页
Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufactu... Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures. 展开更多
关键词 selective laser melting multilayer functionally graded material interfacial characterization crack defects mechanical properties
下载PDF
Subsurface Defect Evaluation of Selective-Laser-Melted Inconel 738LC Alloy Using Eddy Current Testing for Additive/Subtractive Hybrid Manufacturing 被引量:5
11
作者 Sai Guo Guanhui Ren Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期224-239,共16页
New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing fa... New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing factors includ-ing excitation frequency,lift-off distance,defect depth and size,residual heat,and surface roughness on the defect EC signals of an Inconel 738LC alloy produced by selective laser melting(SLM).The experimental investigations recorded the impedance amplitude and phase angle of EC signals for each defect to explore the feasibility of detecting sub-surface defects by merely analyzing these two key indicators.Overall,this study revealed preliminary qualitative and roughly quantitative relationships between influencing factors and corresponding EC signals,which provided a prac-tical reference on how to quantitively inspect subsurface defects using eddy current testing(ECT)on SLMed parts,and also made solid progress toward on-line ECT in additive/subtractive hybrid manufacturing(ASHM)for fabricating SLMed parts with enhanced quality and better performance. 展开更多
关键词 Eddy current testing Subsurface defect Additive/subtractive hybrid manufacturing Selective laser melting Inconel 738LC alloy
下载PDF
Microstructural evolution and mechanical properties of selective laser melted Ti-6Al-4V induced by annealing treatment 被引量:4
12
作者 WANG Pei CHEN Feng-hua +3 位作者 J.ECKERT S.PILZ S.SCUDINO K.G.PRASHANTH 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1068-1077,共10页
Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show tha... Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively). 展开更多
关键词 selective laser melting TI-6AL-4V annealing treatment MICROSTRUCTURE mechanical properties
下载PDF
Selective laser melted near-beta titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe:Microstructure and mechanical properties 被引量:5
13
作者 HUANG Hua-long LI Dan +4 位作者 CHEN Chao LI Rui-di ZHANG Xiao-yong LIU Shi-chao ZHOU Ke-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1601-1614,共14页
In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy... In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy showed columnarβgrains spreading over multiple layers and paralleling to the building direction.The distinct microstructure of as-fabricated alloy was composed of near-β(more than 98.1%)with a submicron cellular structure.Different SLM processing parameters such as hatch spacing could affect the microstructure of as-fabricated alloy,which could thus further significantly affect the mechanical properties of as-fabricated alloy.In addition,the as-fabricated alloy with the distinct microstructure exhibits yield strength of 818 MPa combined with elongation of more than 19%,which shows that SLM is a potential technology for manufacturing near-beta titanium components. 展开更多
关键词 selective laser melting Ti-5Al-5Mo-5V-1Cr-1Fe near-βandβ-titanium alloy cellular structure PRECIPITATION
下载PDF
Effect of platform temperature on microstructure and corrosion resistance of selective laser melted Al-Mg-Sc alloy plate 被引量:2
14
作者 LI Meng-jia LIAN Juan +4 位作者 CAO Ling-fei SHI Yun-jia ZHANG Guo-peng WANG Jie-fang ROMETSCH Paul 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期999-1014,共16页
The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction.... The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction. 展开更多
关键词 selective laser melting aluminum alloys MICROSTRUCTURE corrosion resistance platform temperature
下载PDF
Investigation of the stress rupture behavior of GTD-111 superalloy melted by VIM/VAR 被引量:1
15
作者 Ainaz Agh Alireza Amini 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第9期1035-1041,共7页
The effects of vacuum induction melting(VIM) and vacuum arc remelting(VAR) processes on the microstructure and stress rupture properties of Ni-based GTD-111 superalloy were investigated. Samples of GTD-111 master allo... The effects of vacuum induction melting(VIM) and vacuum arc remelting(VAR) processes on the microstructure and stress rupture properties of Ni-based GTD-111 superalloy were investigated. Samples of GTD-111 master alloy were melted in VIM and VAR furnaces and then poured into a preheated ceramic mold for VIM melt or into a water-cooled copper mold for VAR melt. The as-cast samples were examined radiographically to ensure that no casting defects were present in the final castings; the samples were then heat-treated using a standard heat-treatment cycle. The microstructure of the samples was investigated using optical microscopy and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy for microanalysis. On the basis of standard ASTM-E139, stress rupture tests were carried out at 1000°C under a stress of 300 MPa. The results showed that a γ matrix, fine γ′ precipitates, a γ–γ′ eutectic structure, carbide particles, and some harmful phases such as σ and η phases were present in the as-cast samples. The γ′ precipitates with cubic morphology appeared in the matrix after the standard heat-treatment process. The extent of segregation and the amount of γ–γ′ eutectic structure formed in the VAR-prepared sample were less than in the VIM-prepared sample. The results of stress rupture tests showed that the rupture time for the VAR sample was 43% longer than that for the VIM sample. 展开更多
关键词 GTD-111 VACUUM induction melting(VIM) VACUUM arc remelting(VAR) stress RUPTURE
下载PDF
DYNAMIC MATHEMATICAL MODEL OF CHEMICAL COMPOSITION FOR MELTED IRON IN CUPOLA AND MICROCOMPUTER SIMULATION
16
作者 Chen Fang Chen Gang(Harbin Science and Technology Univeisity)Sode Yama Chuichi(Japan Nagaoka University of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第4期332-338,共17页
Sequential melting theory is applied to reteal that fluctuation of chemical composition ofmelted iron in cupola is caused by the process of sequential melting. Fluctuation is incvitable andcyclc. Usting microcornputer... Sequential melting theory is applied to reteal that fluctuation of chemical composition ofmelted iron in cupola is caused by the process of sequential melting. Fluctuation is incvitable andcyclc. Usting microcornputer dynamic simulation has confirmed that the fluctuation situation ofchemical composition cf melted iron is contistent with actuaa production on the whole. 展开更多
关键词 Cupola melted iron Chemical composition Simulation
全文增补中
Study on microstructure and properties of laser surface melted layer of AZ31B magnesium alloy 被引量:1
17
作者 崔泽琴 王文先 +2 位作者 葛亚琼 王建玲 许并社 《China Welding》 EI CAS 2010年第1期1-5,共5页
An attempt has been made to improve the surface properties of AZ31B magnesium alloy through solid solution hardening and refinement of microstructures using a CO2 laser as a heat generating source. X-ray diffraction ... An attempt has been made to improve the surface properties of AZ31B magnesium alloy through solid solution hardening and refinement of microstructures using a CO2 laser as a heat generating source. X-ray diffraction (XRD) was used to identify the phases. Microstructure and properties of laser melted layer of AZ31B magnesium alloy were observed or tested by means of optical microscope (OM), scanning electron microscope (SEM), micro-hardness equipment and electrochemical corrosion equipment etc. The results show that the microstructure of laser melted layer becomes finer significantly and uniform. Compared with the substrate, the content of β-Mg17 Al12 phase of melted layer decreases comparatively. Microhardness of the laser melted layer is improved to 50 -95 HV0. 05 as compared to 40 -45 HV0.05 of the AZ31B Mg alloy substrate. The results of electrochemical corrosion show that the corrosion resistance of laser surface melted layer has been improved. 展开更多
关键词 AZ31B magnesium ahoy laser surface melting MICROSTRUCTURE PROPERTIES
下载PDF
High-strength friction stir welding of selective laser melted AlSi10Mg alloys 被引量:1
18
作者 Wang Wei Li Peng +4 位作者 Meng Xiangchen Xie Yuming Mao Dongxin Zhang Zeyu Huang Yongxian 《China Welding》 CAS 2022年第4期23-27,共5页
Selective laser melted AlSi10Mg alloys with eutectic network structures were successfully joined by friction stir welding.Sound butt-lap joints have been achieved.A novel enlarged pin was designed to overcome kissing ... Selective laser melted AlSi10Mg alloys with eutectic network structures were successfully joined by friction stir welding.Sound butt-lap joints have been achieved.A novel enlarged pin was designed to overcome kissing bonding defects and increase interfacial bonding area.The hook defect in a conventional butt-lap joint was avoided due to the limitation of the upward flow of interfacial materials,and the interfacial joining width was 2.5 times of the plate thickness.The eutectic Si network structure was broken into the re-dispersed rich-Si phases,improving joint performance.The ultimate tensile strength reached 83.1%of the matrix,higher than those of conventional melting techniques. 展开更多
关键词 Friction stir welding selective laser melting AlSi10Mg alloy
下载PDF
Refinement of α′Martensite by Oxygen in Selective Laser Melted Ti-6Al-4V
19
作者 Hasfi FNurly Jinhu Zhang +8 位作者 Dechun Ren Yusheng Cai Haibin Ji Dongsheng Xu Zhicheng Dong Hao Wang Qingmiao Hu Jiafeng Lei Rui Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第5期777-792,共16页
Oxygen is crucial in influencing the microstructure evolution of selective laser melted(SLMed)Ti–6Al–4V,significantly impacting its applicability in various sectors.Therefore,this study investigates the influnce of ... Oxygen is crucial in influencing the microstructure evolution of selective laser melted(SLMed)Ti–6Al–4V,significantly impacting its applicability in various sectors.Therefore,this study investigates the influnce of oxygen on microstructure evolution,particularlyα′martensite transformation and refinement mechanisms.Four alloys,Ti–6Al–4V–xO(x=0.11,0.16,0.21,and 0.25 wt%),were fabricated by the SLM process.The martensite start temperature(M_(s))of Ti–6Al–4V,as evaluated by computation,is 656.8°C,and oxygen was found to increase the M_(s) by about 10°C per 0.1 wt%.The SLMed alloy samples exhibit[001]_(β)growth texture along the build direction.Crystallographic analysis of martensite morphology suggests internal twinning on{1011}planes as the lattice invariant strain,which becomes more predominant with increasing oxygen content.Refinement of α′martensite plates by oxygen is due to increased lattice distortion,reduced prior β grain size,and oxygen segregation toβgrain boundaries.Our findings contribute to improving the understanding of the effect of oxygen on the transformation mechanism ofα′martensite during SLM of Ti–6Al–4V. 展开更多
关键词 Selective laser melting α′Martensite Martensite start temperature OXYGEN TI-6AL-4V
原文传递
Serrated chip characteristics and formation mechanism in high-speed machining of selective laser melted Ti6Al4V alloys
20
作者 LIU DeJian WANG YouQiang +2 位作者 NI ChenBing ZHU LiDa ZHENG ZhongPeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第5期1435-1450,共16页
Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology featu... Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology features(chip free surface,tool-chip contact surface,and chip edge),and chip segment parameters in subsequent high-speed(vc=50 and 150 m min-1)machining of selective laser melted(SLMed)Ti6Al4V alloys,which are significantly different from conventional Ti6Al4V alloy in microstructure,mechanical properties and machinability.The effect of laser beam scanning schemes(0°,67.5°,and 90°),machined surfaces(top and front),and cutting speeds on serrated chip characteristics of SLMed Ti6Al4Valloys was investigated.Based on the Johnson-Cook constitutive model of SLMed Ti6Al4Valloys,an orthogonal cutting model was developed to better understand the effect of physical-mechanical properties on the shear localization,which dominates the formation mechanism of serrated chips in post-machining of SLMed Ti6Al4V alloy.The results showed that the critical cutting speed(CCS)for chip serration of SLMed Ti6Al4V alloy is lower than that for serrated chips of conventional Ti6Al4V alloy,and the serrated profile of SLMed Ti6Al4V chips was more regular and pronounced.Besides,due to anisotropic microstructure and mechanical properties of SLMed Ti6Al4Valloys,the serration degree of chips produced on the top surfaces of SLMed Ti6Al4Valloys is more prominent than that of chips generated on the front surfaces.In addition,because of the poor deformation coordination and high plastic flow stresses of needle-like martensiteα′,the plastic flow and grain distortion in the adiabatic shear band(ASB)of SLMed Ti6Al4V chips are significantly smaller than those in the ASB of conventional Ti6Al4V with equiaxed grains. 展开更多
关键词 serrated chips selective laser melted Ti6Al4V alloys high-speed machining chip characteristics anisotropic properties
原文传递
上一页 1 2 98 下一页 到第
使用帮助 返回顶部