The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstru...The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.展开更多
The shell-model molecular dynamics method was applied to simulate the melting temper- atures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state f...The shell-model molecular dynamics method was applied to simulate the melting temper- atures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state for SrF2 and BaF2 over the pressure range of 0.1 MPa-3 GPa and 0.1 MPa-7 GPa. Compared with previous results for equations of state, the maximum errors are 0.3% and 2.2%, respectively. Considering the pre-melting in the fluorite-type crystals, we made the necessary corrections for the simulated melting temper- atures of SrF2 and BaF2. Consequently, the melting temperatures of SrF2 and BaF2 were obtained for high pressures. The melting temperatures of SrF2 and BaF2 that were obtained by the simulation are in good agreement with available experimental data.展开更多
Among the processing conditions of injection molding, temperature of the melt entering the mold plays a significant role in determining the quality of molded parts. In our previous research, a neural network was deve...Among the processing conditions of injection molding, temperature of the melt entering the mold plays a significant role in determining the quality of molded parts. In our previous research, a neural network was developed to predict the melt temperature in the barrel during the plastication phase. In this paper, a neural network is proposed to predict the melt temperature at the nozzle exit during the injection phase. A typical two-layer neural network with back propagation learning rules is used to model the relationship between input and output in the injection phase. The preliminary results show that the network works well and may be used for on-line optimization and control of injection molding processes.展开更多
The volatilization kinetics of senarmontite(Sb_2O_3) was analyzed in a neutral atmosphere in two temperature ranges: 550-615 °C(roasting temperature) and 660-1100 °C(melting temperature) by using a th...The volatilization kinetics of senarmontite(Sb_2O_3) was analyzed in a neutral atmosphere in two temperature ranges: 550-615 °C(roasting temperature) and 660-1100 °C(melting temperature) by using a thermogravimetric analysis method under various gas flow rates and using a 1.3 m L ceramic crucible(11 mm in internal diameter and 14 mm in height). The effect of particle size was also analyzed. The experimental results of mass loss data, X-ray diffraction(XRD) analysis of partially reacted samples and thermodynamic studies indicate that the senarmontite becomes volatile in the form of Sb_4O_6(g) without the formation of any intermediary compound in the entire temperature range. At roasting temperatures, the volatilization kinetics of Sb_2O_3 was analyzed using the model X=kappt. The volatilization reaction was controlled by the surface chemical reaction and an activation energy value of 193.0 k J/mol was obtained in this temperature range. Based on the volatilization kinetics at the melting temperatures, for linear behaviour in nitrogen gas, kinetic constants were determined, and an activation energy of 73.9 k J/mol was calculated for the volatilization reaction with a surface area of 8.171×10^(-5)m^2.展开更多
The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by cou...The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 °C) associated with four different plate inclinations (30°, 45°, 60° and 75°). Melt pouring temperature of 625 °C with plate inclination of 60° shows fine and globular microstructures and it is the optimum.展开更多
The density, equilibrium heat of fusion and equilibrium melting temperature of Nylon 1010 were determined by means of infrared spectrum, differential scanning calorimetry, wide angle X-ray diffraction and density meas...The density, equilibrium heat of fusion and equilibrium melting temperature of Nylon 1010 were determined by means of infrared spectrum, differential scanning calorimetry, wide angle X-ray diffraction and density measurement techniques. According to Starkweatber' s method crystalline density ρ_c and amorphous density ρ_a were estimated to be 1.098 and 1.003 g/cm^3 respectively by extrapolating the straight lines of the IR absorbanee against density to zero intensity. Owing to the less intense in absorbance and less sensitive to the change in crystallinity of the amorphors band the thus obtained ρ_c was too low in value. Thereby the value of the ratio ρ_c /ρ_a is far less than generally accepted mean value for most crystalline polymers. Accordingly, traditional X-ray diffraction method was used through determining thc crystalline dimension(a=4.9, b=5.4, c=27.8, α=49° β=77.0°, γ=63.5°), and a rather correct value of ρ_c or the crystal density 1.13 g/cm^3 was obtained. The equilibrium heat of fusion △H_m^0 was estimated to be 244.0 J/g piotting △H_m 's of specimens with different crystallinity against their corre sponding specific volumes_(sp), and extrapolating to completely crystalline condition (_(sp)~c= 1/ρ_c) As to the equilibrium melting temperature T_m^0, because of the easiness of recrystallization of melt crystallized Nylon 1010 specimen, the well-known Hoffman's T_m-T_c method failed in determining this value and an usually rarely used Kamide double extrapolation method was adopted. The so obtained value of T_m^0 487 seems to be fairly reasonable.展开更多
Experiments were carried out on carburizing and temperature rising of the semi steel melt in a plasma induction furnace.Influence of many factors, such as power supply mode,position of the plasma torch and bottom b...Experiments were carried out on carburizing and temperature rising of the semi steel melt in a plasma induction furnace.Influence of many factors, such as power supply mode,position of the plasma torch and bottom blown gas stirring,on heating efficiency and melt temperature distribution was studied. Melt temperature could be effectively controlled by plasma heating,and carbon content of semi steel melt increased from 1.92 % to 4.58 %, and the utilization rate of carbon reached up to 61.57 % during carburizing of the melt.展开更多
The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were...The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were studied systematically in this paper.The slag structure,melting temperature,and viscous characteristics were investigated by Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,Fact Sage calculation,and viscosity measurements.Experimental results show that the increase of Fe_(2)O_(3)content(3.8wt%–16.6wt%),the mass ratio of CaO/SiO_(2)(m(CaO)/m(SiO_(2)),0.5–1.3),and the mass ratio of SiO_(2)/Al_(2)O_(3)(m(SiO_(2))/m(Al_(2)O_(3)),1.0–5.0)can promote the depolymerization of silicate network,and the presence of a large amount of Fe_(2)O_(3)in form of tetrahedral and octahedral units ensures the charge compensation of Al^(3+)ions and makes Al_(2)O_(3)only behave as an acid oxide.Thermodynamic calculation and viscosity measurements show that with the increase of Fe_(2)O_(3)content,m(Ca O)/m(SiO_(2)),and m(SiO_(2))/m(Al_(2)O_(3)),the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag,leading to the decrease in melting point and viscosity of the slag,while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point.Based on experimental analysis,the preferred slag composition with low polymerization degree,viscosity,and melting point is as follows:Fe_(2)O_(3)content of 10.2wt%–13.4wt%,m(CaO)/m(SiO_(2))of 0.7–0.9 and m(SiO_(2))/m(Al_(2)O_(3))of 3.0–4.0.This work provides a theoretical support for slag design in co-smelting process of SAC and CBES.展开更多
A computational fluid dynamics (CFD) simulation was carried out with CFX4,3 to investigate the melt flow and temperature distributions in the settler of a flash furnace. Sixteen cases of one slag tap hole adopted wi...A computational fluid dynamics (CFD) simulation was carried out with CFX4,3 to investigate the melt flow and temperature distributions in the settler of a flash furnace. Sixteen cases of one slag tap hole adopted with one matte tap hole (1-to-l) and one slag tap hole adopted with two matte tap holes (1-to-2) operation modes were modelled. The simulation results show that the melt flows are similar in both two operation modes, but evident circulations can be found in the case of the 1-to-2 operation mode. The combination modes of the slag and matte tap holes are found to have a significant effect on the temperature distributions of the melt. The melt temperature is more uniform in the case of the 1-to-2 mode. Selection of a matte tap hole farther away from the inlet is more conducive to achieve a uniform distribution of the melt temperature in the settler in nractical tannine oneration展开更多
The composition and size distribution of cutting waste were characterized. The Si-rich powders were obtained from the cutting waste using a physical sedimentation process, and then further purified by removing impurit...The composition and size distribution of cutting waste were characterized. The Si-rich powders were obtained from the cutting waste using a physical sedimentation process, and then further purified by removing impurity using acid leaching. The effects of process parameters such as acid leaching time, temperature and the ratio of solid to liquid on the purification efficiency were investigated, and the parameters were optimized. Afterwards, the high-purity Si ingot was obtained by melting the Si-rich powders in vacuum furnace. Finally, the high purity Si with 99.96%Si, 1.1×10^-6 boron (B), and 4.0×10^-6 phosphorus (P) were obtained. The results indicate that it is feasible to extract high-purity Si, and further produce SoG-Si from the cutting slurry waste.展开更多
Melting temperature, spreadability, mechanical properties and the microstructures of joints brazed with silver-base filler metals including different amounts of Ga and/or In were studied respectively in this paper, an...Melting temperature, spreadability, mechanical properties and the microstructures of joints brazed with silver-base filler metals including different amounts of Ga and/or In were studied respectively in this paper, and the results show that the melting temperature of the silver-base filler metals is decreased, spreadability of the silver-base filler metals is improved, and the microstructures of silver-base filh, r metals are refined obviously with the addition of Ga and/or In. Using copper and brass plates as base metal and brazing with flame method, the mechanical properties of the lap-joint and butt joint were also examined and analyzed respectively, and the results indicate that the fracture position of two kinds of brazed joints occurred on the base metal, except for the lap-joint of brass, which shows better mechanical properties of the joints brazed with the silver- based filler metals including Ga. For the lap-joint of brass, the tensile strength gradually increased with the increase of Ga content, while the addition of In has little effect on mechanical properties. It is also found that the best comprehensive properties of cadmium-free Ag-Cu-Zn filler metals are obtained when Ga content is about 3.0 wt. % and In content is between 1.5 wt. % and 2. 0 wt. %.展开更多
A Fourier Transform Infrared Spectroscopic(FTIR)method involving a Fe2O3 flux was used to learn how China's coal ash melts.The relationship between ash fusion temperature and chemical composition,as well as the ef...A Fourier Transform Infrared Spectroscopic(FTIR)method involving a Fe2O3 flux was used to learn how China's coal ash melts.The relationship between ash fusion temperature and chemical composition,as well as the effects of Fe2O3 flux on the ash fusion temperature were studied.The relationship between ash fusion temperature and chemical composition,mineralogical phases and functional groups was analyzed with the FTIR method.The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks,which is of great significance for the study of ash behavior.展开更多
The melting temperature and critical transition temperature Tc of YBa2Cu3O7-δ with deferent content additives of PbO and BaPbO3 were studied. When PbO was doped in YBa2Cu3O7-δ, the melting temperature of YBa2Cu3O7-...The melting temperature and critical transition temperature Tc of YBa2Cu3O7-δ with deferent content additives of PbO and BaPbO3 were studied. When PbO was doped in YBa2Cu3O7-δ, the melting temperature of YBa2Cu3O7-δ was reduced, however its superconductivity was weakened. From the XRD pattern of the sintered mixture of YBa2Cu3O7-δ and PbO, it was known that there was a reaction between YBa2Cu3O7-δ and PbO, and the product was BaPbO3. Hence different contents of BaPbO3 (10mass%, 20mass% and 30mass%) were added in YBa2Cu3O7-δ. It was proved that there were no reactions between YBa2Cu3O7-δ and BaPbO3. And the superconductivity of the mixtures was much better than that of the samples with PbO additive.展开更多
It is important, for electronic application, to decrease the melting point of Sn-5Sb solder alloy because it is relatively high as compared with the most popular eutectic Pb-Sn solder alloy. Adding Au or Ag can decrea...It is important, for electronic application, to decrease the melting point of Sn-5Sb solder alloy because it is relatively high as compared with the most popular eutectic Pb-Sn solder alloy. Adding Au or Ag can decrease the onset melting temperature (233℃) of this alloy to 203,5℃ and 216℃, respectively. The results indicate that the Sn-5Sb-i.5Au alloy has very good ultimate tensile strength (UTS), ductility, and fusion heat, which are better than both those of the Sn-5Sb-3.SAg and Sn-5Sb alloys. The formation of intermetallic compounds (IMCs) AuSn4 and Ag3Sn enhanced the SbSn precipitates in the solidification microstructure microstructure stability, while retained the formation of thus significantly improved the strength and ductility For all alloys, both UTS and yield stress (σy) increase with increasing strain rate and decrease with increasing temperature in tensile tests, but changes of ductility are generally small with inconsistent trends.展开更多
The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and...The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction . The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.展开更多
This article reports the effects of phosphorus addition on the melting behavior, microstructure, and mechanical properties of Sn3.0Ag0.SCu solder. The melting behavior of the solder alloys was determined by differenti...This article reports the effects of phosphorus addition on the melting behavior, microstructure, and mechanical properties of Sn3.0Ag0.SCu solder. The melting behavior of the solder alloys was determined by differential scanning calorimetry. The interracial micro- structure and phase composition of solder/Cu joints were studied by scanning electron microscopy and energy dispersive spectrometry. Thermodynamics of Cu-P phase formation at the interface between Sn3.0Ag0.5Cu0.5P solder and the Cu substrate was characterized. The results indicate that P addition into Sn3.0Ag0.5Cu solder can change the microstructure and cause the appearance of rod-like CuaP phase which is distributed randomly in the solder bulk. The Sn3.0Ag0.5Cu0.5P joint shows a mixture of ductile and brittle fracture after shear test- ing. Meanwhile, the solidus temperature of Sn3.0Ag0.5Cu solder is slightly enhanced with P addition.展开更多
The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the secon...The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the second and third stages may be about the groups of CH_3CH_2OH, CH_3CHO and SO_2 volatilized, respectively. The decomposition residuum of three stages was analyzed by FT-IR, and the results of FT-IR agreed with the decomposition process predicted by theoretical weight loss. The specific heat capacity of sodium hydroxyethyl sulfonate was determined by differential scanning calorimetry(DSC). The melting temperature and melting enthalpy were obtained to be 465.41 K and 25.69 kJ·mol^(-1), respectively. The molar specific heat capacity of sodium hydroxyethyl sulfonate was determinated from 310.15 K to 365.15 K and expressed as a function of temperature.展开更多
The grain reifnement limits of commercial pure Al inoculated by Al-5Ti-1B, Al-5Ti-0.25C and Al-5Ti-0.3C-0.2B master al oys were studied, and the inlfuence of melting temperature on the grain reifning performance of th...The grain reifnement limits of commercial pure Al inoculated by Al-5Ti-1B, Al-5Ti-0.25C and Al-5Ti-0.3C-0.2B master al oys were studied, and the inlfuence of melting temperature on the grain reifning performance of these three master al oys was investigated using a high scope video microscope (HSVM), a ifeld-emission scanning electron microscope (FESEM), an electron probe micro-analyzer (EPMA) and X-ray diffraction (XRD) method. Results show that there is a grain reifnement limit of commercial pure Al reifned by these three master al oys; with the same addition level of 1.5% under the present experimental conditions, the grain reifnement limits (smal est average grain size) of commercial pure Al reifned by Al-5Ti-1B, Al-5Ti-0.25C and Al-5Ti-0.3C-0.2B master al oys are 50 μm, 80 μm and 80 μm, respectively. In addition, with an increase in the melting temperature of the pure Al, the grain reifning performance of Al-5Ti-1B and Al-5Ti-0.25C master al oys decreases, but the grain reifning performance of Al-5Ti-0.3C-0.2B changes little.展开更多
Genetic mutations are important molecular biomarkers for cancer diagnosis and surveillance. Therefore, the development of methods for mutation detection characterized with straightforward, highly specific and sensitiv...Genetic mutations are important molecular biomarkers for cancer diagnosis and surveillance. Therefore, the development of methods for mutation detection characterized with straightforward, highly specific and sensitive to low-level mutations within various sequence contexts is extremely needed. Although some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a fluorescent probe coupled with blocker and property of melting temperature discrimination, which is able to identify the presence of known or unknown single-base variations at abundances down to 0.1% within 20 min. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 10.15–38.48. The method is sequence independent, which assures a wide range of application. The new method would be an ideal choice for high-throughput in vitro diagnosis and precise clinical treatment.展开更多
Leishmaniasis is a set of diseases with a worldwide distribution that affects mainly economically underprivileged populations in developing countries. It has a major impact on public health, with a global cost of bill...Leishmaniasis is a set of diseases with a worldwide distribution that affects mainly economically underprivileged populations in developing countries. It has a major impact on public health, with a global cost of billions of dollars per year. The treatment and control of leishmaniasis vary according to the Leishmania species involved, which require reliable methods for species identification. Since most of the currently used methods have limitations, there is a need for assays that allow rapid, precise identification of the offending species. Real-time polymerase chain reactions in conjunction with dissociation curve analysis have been used to detect differences in the DNA composition of selected genes of Leishmania spp. Kinetoplast DNA is the main molecular target used because of its high copy number per parasite, but other targets have also been studied. As part of an effort to establish melting temperature standards for each target gene, we have reviewed the pertinent literature available in public databases, including Pub Med, Web of Science, Sci ELO and LILACS, using the keywords "Leishmania", "leishmaniasis", "realtime PCR", "melting temperature", and "melting curve", alone or in combination. After applying eligibility criteria, 27 articles were selected for analysis. A considerable variation in the methodologies analyzed was found regarding molecular targets, standardization of the methods, reproducibility and specificity. Because of this, statistical analysis was not performed. In most cases, the methods were able to differentiate the parasite at the subgenus level or few species regardless of the target chosen.展开更多
基金Projects(50831003,51071065,51101022,51102090) supported by the National Natural Science Foundation of China
文摘The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.
基金This work was supported by the National Natural Science Foundation of China (No.10676025) and Research Center of Laser Fusion, China Academy of Engineering Physics.
文摘The shell-model molecular dynamics method was applied to simulate the melting temper- atures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state for SrF2 and BaF2 over the pressure range of 0.1 MPa-3 GPa and 0.1 MPa-7 GPa. Compared with previous results for equations of state, the maximum errors are 0.3% and 2.2%, respectively. Considering the pre-melting in the fluorite-type crystals, we made the necessary corrections for the simulated melting temper- atures of SrF2 and BaF2. Consequently, the melting temperatures of SrF2 and BaF2 were obtained for high pressures. The melting temperatures of SrF2 and BaF2 that were obtained by the simulation are in good agreement with available experimental data.
文摘Among the processing conditions of injection molding, temperature of the melt entering the mold plays a significant role in determining the quality of molded parts. In our previous research, a neural network was developed to predict the melt temperature in the barrel during the plastication phase. In this paper, a neural network is proposed to predict the melt temperature at the nozzle exit during the injection phase. A typical two-layer neural network with back propagation learning rules is used to model the relationship between input and output in the injection phase. The preliminary results show that the network works well and may be used for on-line optimization and control of injection molding processes.
文摘The volatilization kinetics of senarmontite(Sb_2O_3) was analyzed in a neutral atmosphere in two temperature ranges: 550-615 °C(roasting temperature) and 660-1100 °C(melting temperature) by using a thermogravimetric analysis method under various gas flow rates and using a 1.3 m L ceramic crucible(11 mm in internal diameter and 14 mm in height). The effect of particle size was also analyzed. The experimental results of mass loss data, X-ray diffraction(XRD) analysis of partially reacted samples and thermodynamic studies indicate that the senarmontite becomes volatile in the form of Sb_4O_6(g) without the formation of any intermediary compound in the entire temperature range. At roasting temperatures, the volatilization kinetics of Sb_2O_3 was analyzed using the model X=kappt. The volatilization reaction was controlled by the surface chemical reaction and an activation energy value of 193.0 k J/mol was obtained in this temperature range. Based on the volatilization kinetics at the melting temperatures, for linear behaviour in nitrogen gas, kinetic constants were determined, and an activation energy of 73.9 k J/mol was calculated for the volatilization reaction with a surface area of 8.171×10^(-5)m^2.
基金financial support received from Ministry of Mines, TIFAC, and Department of Science and Technology
文摘The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 °C) associated with four different plate inclinations (30°, 45°, 60° and 75°). Melt pouring temperature of 625 °C with plate inclination of 60° shows fine and globular microstructures and it is the optimum.
文摘The density, equilibrium heat of fusion and equilibrium melting temperature of Nylon 1010 were determined by means of infrared spectrum, differential scanning calorimetry, wide angle X-ray diffraction and density measurement techniques. According to Starkweatber' s method crystalline density ρ_c and amorphous density ρ_a were estimated to be 1.098 and 1.003 g/cm^3 respectively by extrapolating the straight lines of the IR absorbanee against density to zero intensity. Owing to the less intense in absorbance and less sensitive to the change in crystallinity of the amorphors band the thus obtained ρ_c was too low in value. Thereby the value of the ratio ρ_c /ρ_a is far less than generally accepted mean value for most crystalline polymers. Accordingly, traditional X-ray diffraction method was used through determining thc crystalline dimension(a=4.9, b=5.4, c=27.8, α=49° β=77.0°, γ=63.5°), and a rather correct value of ρ_c or the crystal density 1.13 g/cm^3 was obtained. The equilibrium heat of fusion △H_m^0 was estimated to be 244.0 J/g piotting △H_m 's of specimens with different crystallinity against their corre sponding specific volumes_(sp), and extrapolating to completely crystalline condition (_(sp)~c= 1/ρ_c) As to the equilibrium melting temperature T_m^0, because of the easiness of recrystallization of melt crystallized Nylon 1010 specimen, the well-known Hoffman's T_m-T_c method failed in determining this value and an usually rarely used Kamide double extrapolation method was adopted. The so obtained value of T_m^0 487 seems to be fairly reasonable.
文摘Experiments were carried out on carburizing and temperature rising of the semi steel melt in a plasma induction furnace.Influence of many factors, such as power supply mode,position of the plasma torch and bottom blown gas stirring,on heating efficiency and melt temperature distribution was studied. Melt temperature could be effectively controlled by plasma heating,and carbon content of semi steel melt increased from 1.92 % to 4.58 %, and the utilization rate of carbon reached up to 61.57 % during carburizing of the melt.
基金financially supported by the Guangzhou Basic and Applied Basic Research Project,China(No.202102020623)the Guangdong Academy of Sciences’Project of Science and Technology Development,China(No.2020 GDASYL-20200103101)+1 种基金the National Key Research and Development Program of China(No.2020YFC1908902)the Natural Science Foundation of Guangdong Province Project,China(No.2020A1515010729)。
文摘The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were studied systematically in this paper.The slag structure,melting temperature,and viscous characteristics were investigated by Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,Fact Sage calculation,and viscosity measurements.Experimental results show that the increase of Fe_(2)O_(3)content(3.8wt%–16.6wt%),the mass ratio of CaO/SiO_(2)(m(CaO)/m(SiO_(2)),0.5–1.3),and the mass ratio of SiO_(2)/Al_(2)O_(3)(m(SiO_(2))/m(Al_(2)O_(3)),1.0–5.0)can promote the depolymerization of silicate network,and the presence of a large amount of Fe_(2)O_(3)in form of tetrahedral and octahedral units ensures the charge compensation of Al^(3+)ions and makes Al_(2)O_(3)only behave as an acid oxide.Thermodynamic calculation and viscosity measurements show that with the increase of Fe_(2)O_(3)content,m(Ca O)/m(SiO_(2)),and m(SiO_(2))/m(Al_(2)O_(3)),the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag,leading to the decrease in melting point and viscosity of the slag,while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point.Based on experimental analysis,the preferred slag composition with low polymerization degree,viscosity,and melting point is as follows:Fe_(2)O_(3)content of 10.2wt%–13.4wt%,m(CaO)/m(SiO_(2))of 0.7–0.9 and m(SiO_(2))/m(Al_(2)O_(3))of 3.0–4.0.This work provides a theoretical support for slag design in co-smelting process of SAC and CBES.
基金Project (2002AA00104) supported by the National High-tech Research and Development Program of China
文摘A computational fluid dynamics (CFD) simulation was carried out with CFX4,3 to investigate the melt flow and temperature distributions in the settler of a flash furnace. Sixteen cases of one slag tap hole adopted with one matte tap hole (1-to-l) and one slag tap hole adopted with two matte tap holes (1-to-2) operation modes were modelled. The simulation results show that the melt flows are similar in both two operation modes, but evident circulations can be found in the case of the 1-to-2 operation mode. The combination modes of the slag and matte tap holes are found to have a significant effect on the temperature distributions of the melt. The melt temperature is more uniform in the case of the 1-to-2 mode. Selection of a matte tap hole farther away from the inlet is more conducive to achieve a uniform distribution of the melt temperature in the settler in nractical tannine oneration
基金Project (51074043) supported by the National Natural Science Foundation of ChinaProject (2011BAE03B01) supported by the National Technology Support Program of ChinaProject (N120409004) supported by the Fundamental Research Funds for Central Universities,China
文摘The composition and size distribution of cutting waste were characterized. The Si-rich powders were obtained from the cutting waste using a physical sedimentation process, and then further purified by removing impurity using acid leaching. The effects of process parameters such as acid leaching time, temperature and the ratio of solid to liquid on the purification efficiency were investigated, and the parameters were optimized. Afterwards, the high-purity Si ingot was obtained by melting the Si-rich powders in vacuum furnace. Finally, the high purity Si with 99.96%Si, 1.1×10^-6 boron (B), and 4.0×10^-6 phosphorus (P) were obtained. The results indicate that it is feasible to extract high-purity Si, and further produce SoG-Si from the cutting slurry waste.
文摘Melting temperature, spreadability, mechanical properties and the microstructures of joints brazed with silver-base filler metals including different amounts of Ga and/or In were studied respectively in this paper, and the results show that the melting temperature of the silver-base filler metals is decreased, spreadability of the silver-base filler metals is improved, and the microstructures of silver-base filh, r metals are refined obviously with the addition of Ga and/or In. Using copper and brass plates as base metal and brazing with flame method, the mechanical properties of the lap-joint and butt joint were also examined and analyzed respectively, and the results indicate that the fracture position of two kinds of brazed joints occurred on the base metal, except for the lap-joint of brass, which shows better mechanical properties of the joints brazed with the silver- based filler metals including Ga. For the lap-joint of brass, the tensile strength gradually increased with the increase of Ga content, while the addition of In has little effect on mechanical properties. It is also found that the best comprehensive properties of cadmium-free Ag-Cu-Zn filler metals are obtained when Ga content is about 3.0 wt. % and In content is between 1.5 wt. % and 2. 0 wt. %.
基金Projects 2003001 supported by the Key Project of Huainan City405099 by the Project of Science Research and Development of China Petroleum & Chemical Corporation
文摘A Fourier Transform Infrared Spectroscopic(FTIR)method involving a Fe2O3 flux was used to learn how China's coal ash melts.The relationship between ash fusion temperature and chemical composition,as well as the effects of Fe2O3 flux on the ash fusion temperature were studied.The relationship between ash fusion temperature and chemical composition,mineralogical phases and functional groups was analyzed with the FTIR method.The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks,which is of great significance for the study of ash behavior.
文摘The melting temperature and critical transition temperature Tc of YBa2Cu3O7-δ with deferent content additives of PbO and BaPbO3 were studied. When PbO was doped in YBa2Cu3O7-δ, the melting temperature of YBa2Cu3O7-δ was reduced, however its superconductivity was weakened. From the XRD pattern of the sintered mixture of YBa2Cu3O7-δ and PbO, it was known that there was a reaction between YBa2Cu3O7-δ and PbO, and the product was BaPbO3. Hence different contents of BaPbO3 (10mass%, 20mass% and 30mass%) were added in YBa2Cu3O7-δ. It was proved that there were no reactions between YBa2Cu3O7-δ and BaPbO3. And the superconductivity of the mixtures was much better than that of the samples with PbO additive.
文摘It is important, for electronic application, to decrease the melting point of Sn-5Sb solder alloy because it is relatively high as compared with the most popular eutectic Pb-Sn solder alloy. Adding Au or Ag can decrease the onset melting temperature (233℃) of this alloy to 203,5℃ and 216℃, respectively. The results indicate that the Sn-5Sb-i.5Au alloy has very good ultimate tensile strength (UTS), ductility, and fusion heat, which are better than both those of the Sn-5Sb-3.SAg and Sn-5Sb alloys. The formation of intermetallic compounds (IMCs) AuSn4 and Ag3Sn enhanced the SbSn precipitates in the solidification microstructure microstructure stability, while retained the formation of thus significantly improved the strength and ductility For all alloys, both UTS and yield stress (σy) increase with increasing strain rate and decrease with increasing temperature in tensile tests, but changes of ductility are generally small with inconsistent trends.
文摘The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction . The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.
文摘This article reports the effects of phosphorus addition on the melting behavior, microstructure, and mechanical properties of Sn3.0Ag0.SCu solder. The melting behavior of the solder alloys was determined by differential scanning calorimetry. The interracial micro- structure and phase composition of solder/Cu joints were studied by scanning electron microscopy and energy dispersive spectrometry. Thermodynamics of Cu-P phase formation at the interface between Sn3.0Ag0.5Cu0.5P solder and the Cu substrate was characterized. The results indicate that P addition into Sn3.0Ag0.5Cu solder can change the microstructure and cause the appearance of rod-like CuaP phase which is distributed randomly in the solder bulk. The Sn3.0Ag0.5Cu0.5P joint shows a mixture of ductile and brittle fracture after shear test- ing. Meanwhile, the solidus temperature of Sn3.0Ag0.5Cu solder is slightly enhanced with P addition.
文摘The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the second and third stages may be about the groups of CH_3CH_2OH, CH_3CHO and SO_2 volatilized, respectively. The decomposition residuum of three stages was analyzed by FT-IR, and the results of FT-IR agreed with the decomposition process predicted by theoretical weight loss. The specific heat capacity of sodium hydroxyethyl sulfonate was determined by differential scanning calorimetry(DSC). The melting temperature and melting enthalpy were obtained to be 465.41 K and 25.69 kJ·mol^(-1), respectively. The molar specific heat capacity of sodium hydroxyethyl sulfonate was determinated from 310.15 K to 365.15 K and expressed as a function of temperature.
基金financially supported by the National Natural Science Foundation of China(No.51071097)
文摘The grain reifnement limits of commercial pure Al inoculated by Al-5Ti-1B, Al-5Ti-0.25C and Al-5Ti-0.3C-0.2B master al oys were studied, and the inlfuence of melting temperature on the grain reifning performance of these three master al oys was investigated using a high scope video microscope (HSVM), a ifeld-emission scanning electron microscope (FESEM), an electron probe micro-analyzer (EPMA) and X-ray diffraction (XRD) method. Results show that there is a grain reifnement limit of commercial pure Al reifned by these three master al oys; with the same addition level of 1.5% under the present experimental conditions, the grain reifnement limits (smal est average grain size) of commercial pure Al reifned by Al-5Ti-1B, Al-5Ti-0.25C and Al-5Ti-0.3C-0.2B master al oys are 50 μm, 80 μm and 80 μm, respectively. In addition, with an increase in the melting temperature of the pure Al, the grain reifning performance of Al-5Ti-1B and Al-5Ti-0.25C master al oys decreases, but the grain reifning performance of Al-5Ti-0.3C-0.2B changes little.
文摘Genetic mutations are important molecular biomarkers for cancer diagnosis and surveillance. Therefore, the development of methods for mutation detection characterized with straightforward, highly specific and sensitive to low-level mutations within various sequence contexts is extremely needed. Although some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a fluorescent probe coupled with blocker and property of melting temperature discrimination, which is able to identify the presence of known or unknown single-base variations at abundances down to 0.1% within 20 min. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 10.15–38.48. The method is sequence independent, which assures a wide range of application. The new method would be an ideal choice for high-throughput in vitro diagnosis and precise clinical treatment.
文摘Leishmaniasis is a set of diseases with a worldwide distribution that affects mainly economically underprivileged populations in developing countries. It has a major impact on public health, with a global cost of billions of dollars per year. The treatment and control of leishmaniasis vary according to the Leishmania species involved, which require reliable methods for species identification. Since most of the currently used methods have limitations, there is a need for assays that allow rapid, precise identification of the offending species. Real-time polymerase chain reactions in conjunction with dissociation curve analysis have been used to detect differences in the DNA composition of selected genes of Leishmania spp. Kinetoplast DNA is the main molecular target used because of its high copy number per parasite, but other targets have also been studied. As part of an effort to establish melting temperature standards for each target gene, we have reviewed the pertinent literature available in public databases, including Pub Med, Web of Science, Sci ELO and LILACS, using the keywords "Leishmania", "leishmaniasis", "realtime PCR", "melting temperature", and "melting curve", alone or in combination. After applying eligibility criteria, 27 articles were selected for analysis. A considerable variation in the methodologies analyzed was found regarding molecular targets, standardization of the methods, reproducibility and specificity. Because of this, statistical analysis was not performed. In most cases, the methods were able to differentiate the parasite at the subgenus level or few species regardless of the target chosen.