In order to study the mechanism of steam explosion caused by the interactionbetween coolant and melted metal drops with high temperature,the process of explosion generated by water following interaction with molten me...In order to study the mechanism of steam explosion caused by the interactionbetween coolant and melted metal drops with high temperature,the process of explosion generated by water following interaction with molten metal drops is carried out.In the experiment,liquid aluminum and water with different ratios and different temperatures were evaluated,and the influence of different water temperatures on the steam explosion was studied.The corresponding rules of steam explosion at the different experimental conditions were derived.The difference between experiment resultants was analyzed.The experimental results show that when the ratios of liquid aluminum to water are within a certain range,explosions maybe happen,and the higher the temperature of water is,the less likely explosions will occur while other conditions remain the same.The research results would provide an insight into controlling steam explosion.展开更多
Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the micros...Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the microscopic morphology of the bonding interface.At the same time,combined with finite element calculations,the evolution mechanism of the interface of the hot melt explosion welded W/CuCrZr composite plate was explored.The results show that the interface bonding of the hot melt explosion welded W/CuCrZr composite plate is good and there is a cross-melting zone with 3–8μm in thickness,but cracks are developed on the W side.The numerical simulation reproduces the changes of pressure,stress,strain and internal energy at the bonding interface in the process of hot melt explosion welding.The location of the crack generated in the experiment coincides with the high stress position calculated by numerical simulation.The high pressure and high temperature near the hot melt explosion welding interface further promote the bonding of the interface.展开更多
文摘In order to study the mechanism of steam explosion caused by the interactionbetween coolant and melted metal drops with high temperature,the process of explosion generated by water following interaction with molten metal drops is carried out.In the experiment,liquid aluminum and water with different ratios and different temperatures were evaluated,and the influence of different water temperatures on the steam explosion was studied.The corresponding rules of steam explosion at the different experimental conditions were derived.The difference between experiment resultants was analyzed.The experimental results show that when the ratios of liquid aluminum to water are within a certain range,explosions maybe happen,and the higher the temperature of water is,the less likely explosions will occur while other conditions remain the same.The research results would provide an insight into controlling steam explosion.
基金National Natural Science Foundation of China(12072363,12272374,12372373)Special Fund for Fundamental Research of the Central Universities(WK2480000008,WK2480000007,WK2320000049)Anhui Provincial Science and Technology Major Project(202003A05020035)。
文摘Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the microscopic morphology of the bonding interface.At the same time,combined with finite element calculations,the evolution mechanism of the interface of the hot melt explosion welded W/CuCrZr composite plate was explored.The results show that the interface bonding of the hot melt explosion welded W/CuCrZr composite plate is good and there is a cross-melting zone with 3–8μm in thickness,but cracks are developed on the W side.The numerical simulation reproduces the changes of pressure,stress,strain and internal energy at the bonding interface in the process of hot melt explosion welding.The location of the crack generated in the experiment coincides with the high stress position calculated by numerical simulation.The high pressure and high temperature near the hot melt explosion welding interface further promote the bonding of the interface.