期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Preparation and Arc Erosion Resistance of C_f/Cu Composite by Vacuum Melting Infiltration 被引量:5
1
作者 张华煜 LIU Yiwen +1 位作者 ZHAO Xianling LUAN Xingang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第5期1039-1043,共5页
Cf/Cu composite was prepared by vacuum melting infiltration. Ti and Cr were doped to the Cu alloy to improve the wettability between Cu and carbon. The microstrueture was investigated by XRD, SEM and EDS. The arc eros... Cf/Cu composite was prepared by vacuum melting infiltration. Ti and Cr were doped to the Cu alloy to improve the wettability between Cu and carbon. The microstrueture was investigated by XRD, SEM and EDS. The arc erosion rate of Cf/Cu composite was investigated in vacuum. The results showed that the Ti and Cr could improve the wettability between Cu and C/C preform and the infiltration ability of Cu into C/ C preform greatly. A TiC interface formed between the fibers and matrix. The good bonding between the fiber and matrix guaranteed that part of the Cu matrix can still be bonded on the fibers even when the material was exposed to the plasma. Consequently, the carbon fibers were protected from the erosion. In comparison, Cu was completely consumed by the arc erosion. Hence, the graphite was eroded and presented a cauliflower-like morphology. Therefore, the prepared C/Cu bad better ability to resist the arc erosion, compared with common Cu-C material. 展开更多
关键词 Cf/Cu composite vacuum melting infiltration arc erosion
下载PDF
Ablation behaviour and mechanical performance of ZrB_(2)-ZrC-SiC modified carbon/carbon composites prepared by vacuum infiltration combined with reactive melt infiltration
2
作者 ZHANG Jia-ping SU Xiao-xuan +2 位作者 LI Xin-gang WANG Run-ning FU Qian-gang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期633-644,共12页
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona... The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation. 展开更多
关键词 C/C composites ZrB_(2)-ZrC-SiC Vacuum filtration Reactive melt infiltration Ablation.
下载PDF
Microstructure and Oxidation Behavior of ZrB_(2)-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration
3
作者 TAN Min CHEN Xiaowu +5 位作者 YANG Jinshan ZHANG Xiangyu KAN Yanmei ZHOU Haijun XUE Yudong DONG Shaoming 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第8期955-964,共10页
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to... ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics. 展开更多
关键词 ultra-high temperature ceramic ZRB2-SIC oxidation behavior reactive melt infiltration
下载PDF
Preparation of TiC/Ni_3Al Composites by Upward Melt Infiltration 被引量:6
4
作者 Yi PAN (Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China) Kewei SUN (National Engineering Research Center of Solid Waste Resources Recovery, Kunming University of Science and Technology,Kunming 650093, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期387-392,共6页
TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3A... TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3Al has been evidenced by finding Ni_3(Al,Ti)C after fast cooling in the TiC/Ni_3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni_3Al composite processed by upward infiltration had a flexural strength of 1476 MPa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 MPa . Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration. 展开更多
关键词 TIC Preparation of TiC/Ni3Al Composites by Upward Melt infiltration NI AL
下载PDF
Synthesis of SiC/Al Co-Continuous Composite by Spontaneous Melt Infiltration 被引量:4
5
作者 Guangwei HAN and Di FENG (Central Iron & Steel Research Institute, Beijing 100081, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期466-470,共5页
Investigation has been made on the process of synthesizing SiC/Al co-continuous composite by spontaneous melt infiltration. It is found that nitrogen atmosphere is an indispensable factor for spontaneous infiltration ... Investigation has been made on the process of synthesizing SiC/Al co-continuous composite by spontaneous melt infiltration. It is found that nitrogen atmosphere is an indispensable factor for spontaneous infiltration of melt Al into SiC preform with continuous porosity. The critical temperature for spontaneous infiltration occurrence can be lowered and spontaneous infiltration rate increased by doping a small amount of Mg into the Al alloy. Adding fine SiO2 powders into the ceramic preform can play the similar role as Mg-doping by increasing wetting through the chemical reaction of 3SiO2+4AI=2Al2O3+3Si at the infiltration front. Infiltration rate can also be increased by Si-doping to lower the viscosity of the molten Al alloy. In addition, sufficient Si content in the molten Al is also indispensable to avoid the formation of Al4C in the synthesized composite. 展开更多
关键词 CO SIC Synthesis of SiC/Al Co-Continuous Composite by Spontaneous Melt infiltration Al
下载PDF
Effect of melt infiltration parameters on microstructure and mechanical properties of tungsten wire reinforced(Cu_(50)Zn_(43)Al_(7))_(99.5)Si_(0.5) metallic glass matrix composite 被引量:2
6
作者 Ebrahim Karimi SAEIDABADI Reza GHOLAMIPOUR Behrouz GHASEMI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2624-2629,共6页
Using melt infiltration casting at different temperatures (965, 990 and 1015 °C) for different time (10 and 15 min), the composites of (Cu50Zr43Al7)99.5Si0.5 bulk metallic glass reinforced with tungsten wir... Using melt infiltration casting at different temperatures (965, 990 and 1015 °C) for different time (10 and 15 min), the composites of (Cu50Zr43Al7)99.5Si0.5 bulk metallic glass reinforced with tungsten wires were produced. X-ray diffraction (XRD), scanning electron microscopy (SEM) and quasi-static compression tests were carried out to evaluate the microstructure and mechanical properties. The results show that the maximum ultimate compressive strength and strain-to-failure of about 1880 MPa and 16.7% were achieved, respectively, at the infiltration temperature of 965 °C for 15 min. 展开更多
关键词 Cu-based bulk metallic glass matrix composite melt infiltration shear band tungstenwire
下载PDF
Melt Infiltration Ability and Microstructural Evolution of Fe40Al/ TiC Composites System 被引量:2
7
作者 F J Oliveira J L Baptista J M Vieira 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期93-,共1页
Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and cor... Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and corrosion resistance, was used as binder for fabricating Fe40Al/TiC composites b y pressureless melt infiltration. The wetting ability of liquid Fe40Al in porous TiC pre-form was studied by in-situ monitoring the melting and infiltration p rocess. The infiltration ability was investigated by observing the distance of l iquid Fe40Al intrusion in porous TiC pre-forms at different infiltration temper atures and times by using optical microscope. Porous TiC per-forms with density of 60%~88%TD (theoretical density), prepared under pre-defined sintering temp e rature cycles, were used for fabricating Fe40Al/TiC composites in the range of 1 2%~40% metal content by volume. Almost full dense Fe40Al/TiC composites were su c cessfully fabricated by this technique. Liquid Fe40Al exhibited excellent infilt ration ability, the distance of complete intrusion of liquid Fe40Al in the TiC s intered pre-form with density of 88%TD was over 7 mm after 5 min at the inf iltration temperature of 1 450 ℃. Microstructural observation by SEM and TEM also showed that liquid Fe40Al filled the very narrow gaps among TiC particles, the interfaces of TiC particles and F e40Al plastic ligaments being metallurgical bonded. TEM revealed that high densi ty of dislocations formed in Fe40Al ligaments during solidification, which favor the mechanical properties. Ti decomposed from TiC particles and dissolved into Fe40Al during infiltration. According to the compositional analysis of TEM-EDS, the concentration of Ti in Fe40Al ranges at 1at%~4at% depending on composite f a bricating conditions and the distance from the measuring point to the closest Ti C particles. XRD analysis indicated that the composites were composed of two pha ses, the original TiC and Fe 0.4Al 0.6 intermetallic. No new phase formed during infiltration, but the lattice parameter of Fe 0.4Al 0.6 was expended due to the Ti in the solid solution. 展开更多
关键词 TiC Composites System Melt infiltration Ability and Microstructural Evolution of Fe40Al FE
下载PDF
Theoretical study of reactive melt infiltration to fabricate Co-Si/C composites
8
作者 Saqib Shahzad Khurram Iqbal Zaheer Uddin 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期434-439,共6页
Cobalt-silicon based carbon composites(Co–Si/C)have established a noteworthy consideration in recent years as a replacement for conventional materials in the automotive and aerospace industries.To achieve the composi... Cobalt-silicon based carbon composites(Co–Si/C)have established a noteworthy consideration in recent years as a replacement for conventional materials in the automotive and aerospace industries.To achieve the composite,a reactive melt infiltration process(RMI)is used,in which a melt impregnates a porous preform by capillary force.This method promises a high-volume fraction of reinforcement and can be steered in such a way to get the good“near-net”shaped components.A mathematical model is developed using reaction-formed Co–Si alloy/C composite as a prototype system for this process.The wetting behavior and contact angle are discussed;surface tension and viscosity are calculated by Wang’s and Egry’s equations,respectively.Pore radii of 5μm and 10μm are set as a reference on highly oriented pyrolytic graphite.The graphs are plotted using the model,to study some aspects of the infiltration dynamics.This highlights the possible connections among the various processes.In this attempt,the Co–Si(62.5 at.%silicon)alloy’s maximum infiltration at 5μm and 10μm radii are found as 0.05668 m at 125 s and 0.22674 m at 250 s,respectively. 展开更多
关键词 cobalt-silicon/carbon composites Co-Si alloy reactive melt infiltration(RMI) carbon preforms
下载PDF
Microstructure and Mechanical Properties of ZrC_(x)-NbC_(y)-Cu Composites by Reactive Infiltration at 1300℃
9
作者 王东 XU Kai +1 位作者 WEI Boxin WANG Yujin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期52-58,共7页
ZrC_(x)-NbC_(y)-Cu composites were fabricated by pressure-less reactive infiltration of Zr-Cu binary melts into porous NbC preforms at 1300℃.The effect of Zr content in the infiltrator on microstructure of the as-syn... ZrC_(x)-NbC_(y)-Cu composites were fabricated by pressure-less reactive infiltration of Zr-Cu binary melts into porous NbC preforms at 1300℃.The effect of Zr content in the infiltrator on microstructure of the as-synthesized composites was studied.Mechanical properties of the composites were reported.A partial displacement of Nb atoms in NbC by Zr atoms from Zr-Cu melt occurs during the reaction between Zr-Cu melt and porous NbC preform.The formation of a core-shell structure suggests the reaction is mainly a dissolutionprecipitation type.NbC dissolves into Zr-Cu melt,from which the(Nb,Zr)C_(z)phase precipitates and grows.With increasing Zr content in the Zr-Cu infiltrator,the reaction is enhanced and the infiltration is easily chocked.ZrC_(x)-NbC_(y)-Cu composite is synthesized using Zr_(14)Cu_(51)infiltrator.The flexural strength and fracture toughness of ZrC_(x)-NbC_(y)-Cu composite reach 637 MPa and 12.7 MPa·m^(1/2),respectively.And the improved toughness is probably attributed to residual Cu phase and plate-like Nb_(x)C_(y)phases. 展开更多
关键词 ZrC_(x)-NbC_(y)-Cu composite reactive melt infiltration microstructure mechanical properties
下载PDF
Novel titanium particles reinforced Zr-based bulk metallic glass composites prepared by infiltration casting
10
作者 Cuimei Zhang Xidong Hui Meiling Wang Guoliang Chen 《Journal of University of Science and Technology Beijing》 CSCD 2008年第4期505-508,共4页
A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase... A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase in elastic strain to 3% and an enhancement of the strength up to 2.1 GPa. High specific strength has been obtained because of the decrease in density of the composite. It is suggested that an improvement in the mechanical properties of the composite may be attributed to the generation of multiple shear bands and some deformation in the Ti particles. 展开更多
关键词 melt infiltration bulk metallic-glass Ti particles mechanical properties
下载PDF
Microstructure and ablation behavior of Zr-based ultra-high-temperature gradient composites
11
作者 Qing-hua LIU Tian TIAN +2 位作者 Wei SUN Hong-bo ZHANG Xiang XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2889-2899,共11页
To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.Th... To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm. 展开更多
关键词 reactive melt infiltration ceramic-matrix composites gradient material MICROSTRUCTURE ablation property
下载PDF
Particle erosion of C/C-SiC composites with different Al addition in reactive melt infiltrated Si 被引量:3
12
作者 LIU Lei FENG Wei +6 位作者 LI Bo-yan LI Jian-ping ZHANG Lei-lei GUO Yong-chun HE Zi-bo CAO Yi BAO Ai-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2557-2566,共10页
Particle erosion of C/C-SiC composites prepared by reactive melt infiltration with different Al addition was studied by gas-entrained solid particle impingement test.SEM,EDS and XRD were performed to analyze the compo... Particle erosion of C/C-SiC composites prepared by reactive melt infiltration with different Al addition was studied by gas-entrained solid particle impingement test.SEM,EDS and XRD were performed to analyze the composites before and after erosion.The results indicate that a U shape relationship curve presents between the erosion rates and Al content,and the lowest erosion rate occurs at 40 wt%Al.Except for the important influence of compactness,the increasing soft Al mixed with reactive SiC,namely the mixture located between carbon and residual Si also,plays a key role in the erosion of the C/C-SiC composites through crack deflection,plastic deformation and bonding cracked Si. 展开更多
关键词 C/C-SIC Al addition reactive melt infiltration solid particle erosion
下载PDF
High-temperature thermal stability of C/C−ZrC−SiC composites via region labeling method 被引量:2
13
作者 Zheng PENG Chun-mao MIAO +5 位作者 Wei SUN Yong-long XU Hai-kun CHEN Yu-feng LIU Hong-bo ZHANG Xiang XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3349-3361,共13页
To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method... To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms. 展开更多
关键词 thermal stability ceramic-matrix composites reactive melt infiltration high-temperature thermal treatment region labeling method
下载PDF
Enhanced dehydrogenation kinetic properties and hydrogen storage reversibility of LiBH_4 confined in activated charcoal
14
作者 He ZHOU Hai-zhen LIU +1 位作者 Shi-chao GAO Xin-hua WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1618-1625,共8页
LiBH4 was confined into activated charcoal(AC) by melt infiltration method(MI), and its effects on the hydrogen sorption properties were investigated. The N2 adsorption results reveal that melt infiltration method... LiBH4 was confined into activated charcoal(AC) by melt infiltration method(MI), and its effects on the hydrogen sorption properties were investigated. The N2 adsorption results reveal that melt infiltration method can effectively incorporated LiBH4 into AC. It can maintain the structural integrity of the scaffold and ensure the confinement effect. The nano-confined LiBH4/AC starts to release hydrogen at around 190 °C, which is 160 °C lower than that of pure LiBH4, and reaches a hydrogen desorption capacity of 13.6% at 400 °C. When rehydrogenated under the condition of 6 MPa H2 and 350 °C, it has a reversible hydrogen storage capacity of 6%, while pure LiBH4 shows almost no reversible hydrogen storage capacity under the same condition. Mass spectrometry analysis(MS) results suggest that no diborane or other impurity gases are released in the decomposition process. The apparent activation energy of dehydrogenation of LiBH4 after confinement into AC decreases from 156.0 to 121.1 k J/mol, which leads to the eminent enhancement of dehydrogenation kinetics of LiBH4. 展开更多
关键词 hydrogen storage materials hydrogen storage properties lithium borohydride activated charcoal melt infiltration
下载PDF
Progress in Recrystallized SiC and Its Composites
15
作者 GUO Wenming XIAO Hanning GAO Pengzhao 《China's Refractories》 CAS 2015年第3期22-28,共7页
Recrystallized silicon carbide( RSi C),a high purity Si C material sintered by the process of evaporation-condensation without any additives,is one of the most important structural materials in the fields of high te... Recrystallized silicon carbide( RSi C),a high purity Si C material sintered by the process of evaporation-condensation without any additives,is one of the most important structural materials in the fields of high temperatures. However,its low density and porous structure caused by the sintering mechanism in the absence of shrinkage,restrict its wide applications in engineering.This paper reviews the research progress and related technologies on the preparation of high-density RSi C and its composites. RSi C with relative high density up to 2. 75g·cm- 3can be obtained by a combination of pretreatment to Si C raw materials such as reshaping,modification and particle size distribution,and appropriate forming method. Post treatments such as cyclic pyrolysis and impregnation- recrystallization,and slurry impregnation- recrystallization are needed for the further density increase of RSi C( 2. 99 g·cm- 3). In addition,high performance RSi C- Mo Si2 and RSi C- Al composites obtained by melt infiltration are also reviewed. 展开更多
关键词 recrystallized silicon carbide molybdenum disilicide polymer pyrolysis and impregnation melt infiltration
下载PDF
Microstructure and Mechanical Properties of C/C-ZrC-SiC Composites Fabricated by Reactive Melt Infiltration with Zr,Si Mixed Powders 被引量:26
16
作者 Xin Yang Zhean Su +2 位作者 Qizhong Huang Xiao Fang Liyuan Chai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第8期702-710,共9页
To meet the increasing demand for advanced materials capable of operation over 2000 ℃ for future thermal protection systems application, C/C-ZrC-SiC composites were fabricated by reactive melt infiltration (RMI) wi... To meet the increasing demand for advanced materials capable of operation over 2000 ℃ for future thermal protection systems application, C/C-ZrC-SiC composites were fabricated by reactive melt infiltration (RMI) with Zr, Si mixed powders as raw materials. The structural evolution and formation mechanism of the C/C- ZrC-SiC composites were discussed, and the mechanical property of the as-prepared material was investigated by compression test. The results showed that after the RMI process, a special structure with ZrC-SiC multi-coating as outer layer and ZrC-SiC-PyC ceramics as inner matrix was formed. ZrC and SiC rich areas were formed in the composites and on the coating surface due to the formation of Zr-Si intermetallic compounds in the RMI process. Mechanical tests showed that the average compression strength of the C/C-ZrC-SiC composites was 133.86 MPa, and the carbon fibers in the composites were not seriously damaged after the RMI process. 展开更多
关键词 Carbon/carbon composites Reactive melt infiltration COATING ZRC SIC
原文传递
Processing of B_4C Particulate-reinforced Magnesium-matrix Composites by Metal-assisted Melt Infiltration Technique 被引量:11
17
作者 Yantao Yao Liqing Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第7期661-665,共5页
In fabricating magnesium-matrix composites, an easy and cost-effective route is to infiltrate the ceramic preform with molten Mg without any external pressure. However, a rather well wettability of molten Mg with cera... In fabricating magnesium-matrix composites, an easy and cost-effective route is to infiltrate the ceramic preform with molten Mg without any external pressure. However, a rather well wettability of molten Mg with ceramic reinforcement is needed for this process. In order to improve the wettability of the metal melt with ceramic preform during fabricating composites by metal melt infiltration, a simple and viable method has been proposed in this paper where a small amount of metal powder with higher melting point is added to the ceramic preform such that the surface tension of the Mg melt and the liquid-solid interfacial tension could be reduced. By using this method, boron carbide particulate-reinforced magnesium-matrix composites (B4C/Mg) have been successfully fabricated where Ti powder immiscible with magnesium melt was introduced into B4C preform as infiltration inducer. The infiltration ability of molten Mg to the ceramic preform was further studied in association with the processing conditions and the mechanism involved in this process was also analyzed. 展开更多
关键词 Magnesium-matrix composites Boron carbide Melt infiltration Microstructure Mechanism
原文传递
Fabrication and microstructure of ZrB_2–ZrC–SiC coatings on C/C composites by reactive melt infiltration using ZrSi_2 alloy 被引量:7
18
作者 Chaoqiang XUE Haijun ZHOU +3 位作者 Jianbao HU Hongda WANG Jiayue XU Shaoming DONG 《Journal of Advanced Ceramics》 SCIE CSCD 2018年第1期64-71,共8页
ZrB_2–ZrC–SiC ternary coatings on C/C composites are investigated by reactive melt infiltration of ZrSi_2 alloy into pre-coatings. Two different pre-coating structures, including porous B_4C–C and dense C/B, are de... ZrB_2–ZrC–SiC ternary coatings on C/C composites are investigated by reactive melt infiltration of ZrSi_2 alloy into pre-coatings. Two different pre-coating structures, including porous B_4C–C and dense C/B, are designed by slurry dip and chemical vapor deposition(CVD) process respectively. The coating prepared by reactive melt infiltration(RMI) into B_4C–C presents a flat and smooth surface with a three-layer cross-sectional structure, namely interior SiC transition layer, gradient ZrB_2–ZrC–SiC layer, and ZrB_2–ZrC exterior layer. In comparison, the coating prepared by RMI into C/B shows a more granular surface with a different three-layer cross-sectional structure, interior unreacted B–C pre-coating layer, middle SiC layer, and exterior ZrB_2–ZrC–ZrSi_2 layer. The forming mechanisms of the specific microstructures in two coatings are also investigated and discussed in detail. 展开更多
关键词 ultra-high temperature ceramics(UHTCs) COATING reactive melt infiltration(RMI) ALLOY
原文传递
Reactivity improvement of ilmenite by calcium nitrate melt infiltration for Chemical Looping Combustion of biomass 被引量:3
19
作者 Martin Keller Hikaru Oka Junichiro Otomo 《Carbon Resources Conversion》 2019年第1期51-58,共8页
Chemical Looping Combustion is a novel process that generates sequestration-ready CO_(2) from the combustion of woody biomass without requiring a gas separation step and without diluting the CO_(2) with N_(2) from air... Chemical Looping Combustion is a novel process that generates sequestration-ready CO_(2) from the combustion of woody biomass without requiring a gas separation step and without diluting the CO_(2) with N_(2) from air.This is achieved by oxidizing the fuel with lattice oxygen of a metal oxide oxygen carrier.When using cheap and abundant ilmenite ore(FeTiO3)as the oxygen carrier,the rather low reactivity towards volatiles released from the biomass upon devolatilization,as well as detrimental structural changes due to a segregation of Fe and Ti in the material,are of concern.These issues can be addressed by modifying ilmenite with Ca via melt infiltration.In this work,we demonstrate that this modification results in a good distribution of Ca throughout the ilmenite particles that a)prevents detrimental Fe/Ti segregation,b)improves the mechanical stability of the particle compared to materials prepared by solution impregnation and c)improves the reactivity of this material towards hydrogen and wet methane.Moreover,fixed bed experiments showed that the Ca modification not only resulted in increased methane conversion,but also in an increased degree of oxidation of gaseous intermediates CO and H2.We thus conclude that the performance of ilmenite in Chemical Looping processes can be significantly enhanced by Ca modification of ilmenite either prior to use or in-situ during operation of this bed material with Ca-rich fuels such as woody biomass. 展开更多
关键词 Carbon dioxide removal Chemical Looping Combustion ILMENITE Melt infiltration BECCS Biomass combustion
原文传递
Wear-resistant Ag-MAX phase 3D interpenetrating-phase composites:Processing,structure,and properties 被引量:2
20
作者 Yu Guo Xi Xie +11 位作者 Zengqian Liu Longchao Zhuo Jian Zhang Shaogang Wang Qiqiang Duan Qing Jia Dake Xu Weihai Xue Deli Duan Filippo Berto Zhefeng Zhang Rui Yang 《Nano Research》 SCIE EI CSCD 2024年第2期806-819,共14页
Electrical contact materials are generally Ag-or Cu-based composites and play a critical role in ensuring the reliability and efficiency of electrical equipments and electronic instruments.The MAX(M is an early transi... Electrical contact materials are generally Ag-or Cu-based composites and play a critical role in ensuring the reliability and efficiency of electrical equipments and electronic instruments.The MAX(M is an early transition metal,A is an element from III or IV main groups,and X is carbon or/and nitrogen)phase ceramics display a unique combination of properties and may serve as an ideal reinforcement phase for electrical contact materials.The biological materials evolved in nature generally exhibit three-dimensional(3D)interpenetrating-phase architectures,which may offer useful inspiration for the architectural design of electrical contact materials.Here,a series of bi-continuous Ag-Ti_(3)SiC_(2) MAX phase composites with high ceramic contents exceeding 50 vol.%and having micron-and ultrafine-scaled 3D interpenetrating-phase architectures,wherein both constituents were continuous and mutually interspersed,were exploited by pressureless infiltration of Ag melt into partially sintered Ti_(3)SiC_(2) scaffolds.The mechanical and electrical properties as well as the friction and wear performance of the composites were investigated and revealed to be closely dependent on the ceramic contents and characteristic structural dimensions.The composites exhibited a good combination of properties with high hardness over 2.3 GPa,high flexural strength exceeding 530 MPa,decent fracture toughness over 10 MPa·m^(1/2),and good wear resistance with low wear rate at an order of 10^(-5)mm^(3)/(N·m),which were much superior compared to the counterparts made by powder metallurgy methods.In particular,the hardness,electrical conductivity,strength,and fracture toughness of the composites demonstrated a simultaneous improvement as the structure was refined from micron-to ultrafine-scales at equivalent ceramic contents.The good combination of properties along with the facile processing route makes the Ag-Ti_(3)SiC_(2)3D interpenetrating-phase composites appealing for electrical contact applications. 展开更多
关键词 three-dimensional(3D)interpenetrating-phase architecture Ag-MAX(M=early transition metal A=element from III or IV main groups and X=carbon or/and nitrogen)phase composites melt infiltration electrical contact materials mechanical
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部