期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Effect of Nd content on electrochemical performances of nanocrystalline and amorphous (Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0-20) alloys prepared by melt spinning 被引量:10
1
作者 张羊换 杨泰 +3 位作者 卜文刚 蔡颖 张国芳 赵栋梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3668-3676,共9页
The nanocrystalline and amorphous Mg2Ni-type alloys with a chemical composition of (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) were fabricated by melt spinning technology. The effects of spinning rate on the struct... The nanocrystalline and amorphous Mg2Ni-type alloys with a chemical composition of (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) were fabricated by melt spinning technology. The effects of spinning rate on the structure and electrochemical hydrogen storage performance of the alloys were investigated. The as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, suggesting that the addition of Nd facilitates the glass forming of the Mg2Ni-type alloys. Increasing the spinning rate from 0 to 40 m/s gives rise to the discharge capacity growing from 42.5 to 100.6 mA·h/g for the x=0 alloy and from 86.4 to 452.8 mA·h/g for the x=10 alloy. And the cycle stability (S20) rises from 40.2%to 41.1%for the x=0 alloy and from 53.2%to 89.7%for the x=10 alloy, respectively. 展开更多
关键词 hydrogen storage alloy Mg2Ni-type alloy ND melt spinning structure
下载PDF
Controllable large-scale processing of temperature regulating sheath-core fibers with high-enthalpy for thermal management
2
作者 Ziye Chen Zexu Hu +4 位作者 Shining Chen Senlong Yu Liping Zhu Hengxue Xiang Meifang Zhu 《Nano Materials Science》 EI CAS CSCD 2024年第3期337-344,共8页
Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at ... Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRF_(s) with excellent thermal and mechanical properties. Here, polyamide 6(PA6) based TRF_(s) with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF(TRF_(sc)) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials(ssPCM),dendritic silica@polyethylene glycol(SiO_(2)@PEG). With the aid of the sheath structure, the filling content of SiO_(2)@PEG can reach 30 %, so that the enthalpy of the TRF_(s) can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93℃. In addition, the mechanical strength of the prepared TRF_(sc) reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc. 展开更多
关键词 Thermal management Hybrid fibers Polyamides Bicomponent melt spinning Temperature regulating fibers
下载PDF
Effects of spinning rate on structures and electrochemical hydrogen storage performances of RE-Mg-Ni-Mn-based AB_2-type alloys 被引量:6
3
作者 Yang-huan ZHANG Wei ZHANG +3 位作者 Xi-ping SONG Pei-long ZHANG Yong-guo ZHU Yan QI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3219-3231,共13页
La was partially substituted by Ce with the aim of improving the electrochemical hydrogen storage performances ofLa1–xCexMgNi3.5Mn0.5 (x=0, 0.1, 0.2, 0.3, 0.4) alloys, and melt spinning technology was adopted to fabr... La was partially substituted by Ce with the aim of improving the electrochemical hydrogen storage performances ofLa1–xCexMgNi3.5Mn0.5 (x=0, 0.1, 0.2, 0.3, 0.4) alloys, and melt spinning technology was adopted to fabricate the alloys. Theidentification of XRD and SEM reveals that the experimental alloys consist of a major phase LaMgNi4 and a secondary phase LaNi5.The growth of spinning rate results in that the lattice constants and cell volume increase and the grains are markedly refined. Theelectrochemical measurement shows that the as-cast and spun alloys can obtain the maximum discharge capacities just at the firstcycle without any activation needed. With the increase of spinning rate, the discharge capacities of the alloys first increase and thendecline, whereas their cycle stabilities always grow. Moreover, the electrochemical kinetic performances of the alloys first increaseand then decrease with spinning rate growing. 展开更多
关键词 Ni.MH battery hydrogen storage melt spinning discharge capacity KINETICS
下载PDF
Electrochemical hydrogen storage characteristics of La_(0.75-x) M_xMg_(0.25)Ni_(3.2)Co_(0.2)Al_(0.1)(M=Zr,Pr;x=0,0.1) alloys prepared by melt spinning 被引量:7
4
作者 ZHANG Yanghuan YANG Tai +3 位作者 CAI Ying HOU Zhonghui REN Huiping ZHAO Dongliang 《Rare Metals》 SCIE EI CAS CSCD 2012年第5期-,共9页
In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology ... In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology was used to fabricate the La_(0.75-x)M_xMg_0.25Ni_3.2Co_0.2Al_0.1 (M = Zr, Pr; x = 0, 0.1) electrode alloys. The influences of the melt spinning and substituting La with M (M = Zr, Pr) on the structures and the electrochemical hydrogen storage characteristics of the alloys were investigated. The analysis of XRD, SEM, and TEM reveals that the as-cast and spun alloys have a multiphase structure composed of two main phases (La, Mg)_2Ni_7 and LaNi_5 as well as a residual phase LaNi_2 . The as-spun (M = Pr) alloy displays an entire nanocrystalline structure, while an amorphous-like structure is detected in the as-spun (M = Zr) alloy, implying that the substitution of Zr for La facilitates the amorphous formation. The electrochemical measurements exhibit that the substitution of Pr for La clearly increases the discharge capacity of the alloys; however, the Zr substitution brings on an adverse impact. Meanwhile, the M (M = Zr, Pr) substitution significantly enhances its cycle stability. The melt spinning exerts an evident effect on the electrochemical performances of the alloys, whose discharge capacity and high rate discharge ability (HRD) first mount up and then fall with the growing spinning rate, whereas their cycle stabilities monotonously augment as the spinning rate increases. 展开更多
关键词 A_2B_7-type electrode alloy element substitution melt spinning electrochemical performance
下载PDF
Effects of La substitution on microstructure and hydrogen storage properties of Ti−Fe−Mn-based alloy prepared through melt spinning 被引量:6
5
作者 Ze-ming YUAN Zhen QI +3 位作者 Ting-ting ZHAI Hong-zhang WANG Hai-yan WANG Yang-huan ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3087-3095,共9页
The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermod... The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa. 展开更多
关键词 La substitution Ti−Fe−Mn-based alloy melt spinning hydrogen storage kinetics thermodynamics
下载PDF
Texture Evolution in Nanocomposite Nd_2Fe_(140B/α-Fe Magnets Prepared by Direct Melt Spinning 被引量:1
6
作者 王占勇 徐晖 +2 位作者 倪建森 金红明 周邦新 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期298-301,共4页
Texture evolution in nanocomposite Nd_2Fe_ 14B/α-Fe magnets prepared by direct melt spinning was investigated. The free surface and wheel-contacted surface exhibit different texture direction. Modification of composi... Texture evolution in nanocomposite Nd_2Fe_ 14B/α-Fe magnets prepared by direct melt spinning was investigated. The free surface and wheel-contacted surface exhibit different texture direction. Modification of composition not only enhances magnetic properties, but also changes texture direction of the ribbon. Low temperature heat treatment can increase the magnetic properties to some extent, and high temperature annealing decreases the magnetic properties. Both low and high temperature heat treatment have effects on grain orientation, but the difference still exists between the two surfaces of the ribbon. So it is infeasibility to prepare anisotropic Nd_2Fe_ 14B/α-Fe nanocomposite magnets by direct melt spinning. 展开更多
关键词 nanocomposite magnet Nd_2Fe_ 14B/α-Fe melt spinning anisotropic magnets rare earths
下载PDF
Structure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy produced by melt spinning 被引量:1
7
作者 M. IZADINIA K. DEHGHAN H.MOHAMADI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2037-2043,共7页
The microstructure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy (SMA) were compared with those of initial coarse structure. The nanostructured Cu-Al-Ni ribbons were produced via rapid solidifi... The microstructure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy (SMA) were compared with those of initial coarse structure. The nanostructured Cu-Al-Ni ribbons were produced via rapid solidification using melt spinning technique. The structure and properties of both nanostructured and coarse-grain specimens were then characterized using XRD, SEM, AFM and DSC techniques. According to the obtained results, the nanostructured ribbons show one way shape memory effect. Besides, the formation of nanoparticles of γ2 (Cu9Al4) and the nanograins results in a significant decrease in the martensite-austenite transformation temperature. The produced nanostructure not only leads to a considerable increase in the recovered deformation but also results in the structure stability when it is subjected to deformation-recovery cycles. 展开更多
关键词 Cu-Al-Ni shape memory alloys melt spinning rapid solidification nanostructure
下载PDF
Preparation and Magnetic Properties of Melt-Spinning Nd_2Fe_(14)B/α-Fe Nanocomposite Magnets 被引量:1
8
作者 王伟 倪建森 +3 位作者 徐晖 周邦新 李强 王占勇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第4期505-508,共4页
Nd_(11)Fe_(71)Co_8V_(1.5)Cr_1B_(7.5) magnet was prepared by melt-spinning and subsequently annealed. The effects of the wheel speed on the magnetic properties and microstructure were studied. The results reveal that f... Nd_(11)Fe_(71)Co_8V_(1.5)Cr_1B_(7.5) magnet was prepared by melt-spinning and subsequently annealed. The effects of the wheel speed on the magnetic properties and microstructure were studied. The results reveal that fine nanocomposite microstructure consisting of Nd_2Fe_(14)B and α-Fe phases can be developed at an optimum wheel speed of about 21 m·s^(-1). After optimal annealing (640 ℃×4 min), magnetic properties of B_r=0.64 T, (()_jH_c)=903.5 kA·m^(-1) and (BH)_(max)=71 (kJ·m^(-3)) were obtained for the bonded magnets. The addition of Cr element significantly reduces grain size, increasing the intrinsic coercivity and maximum magnetic energy product. 展开更多
关键词 nanocomposite magnets melt spinning exchange coupling rare earths
下载PDF
Effect of melt spinning on gaseous hydrogen storage characteristics of nanocrystalline and amorphous Nd-added Mg_2Ni-type alloys
9
作者 张羊换 袁泽明 +3 位作者 杨泰 祁焱 郭世海 赵栋梁 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2754-2762,共9页
Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous h... Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous hydrogen storage characteristics were investigated. The XRD, TEM and SEM linked with EDS detections reveal that the as-spun Nd-free alloy holds an entire nanocrystalline structure but a nanocrystalline and amorphous structure for the as-spun Nd-added alloy, implying that the addition of Nd facilitates the glass forming in the Mg_2Ni-type alloy. Furthermore, the degree of amorphization of the as-spun Nd-added alloy and thermal stability of the amorphous structure clearly increase with the spinning rate rising. The melt spinning ameliorates the hydriding and dehydriding kinetics of the alloys dramatically. Specially, the rising of the spinning rate from 0(the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s brings on the hydrogen absorption saturation ratio(R_5~a)(a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increasing from 36.9% to 91.5% and the hydrogen desorption ratio(R_(1 0)~d)(a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rising from 16.4% to 47.7% for the(x=10) alloy, respectively. 展开更多
关键词 Mg2Ni-type alloy Nd addition melt spinning nanocrystalline and amorphous alloy hydrogen storage kinetics
下载PDF
Microstructure and Electrochemical Characteristics of Melt-Spinning Alloy Ml(NiCoMnAl)_5
10
作者 WEN Ming fen 1,2 , CHEN Lian 1, TONG Min 1, CHEN De min 1, ZHAI Yu chun 2 ( 1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China 2. Department of Materials and Metallurgy, Northeastern University, Shenyang 11000 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第1期80-80,共1页
The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies sh... The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies show that the microstructure of melt spinning alloys is columnar structure. With increasing melt spinning rate, the crystal grains become finer and preferentially grow along (111)[111] direction. The melt spinning and cast alloys belong to CaCu 5 type hexagonal crystal structure. The electrochemical measurements show that the initial capacities of melt spinning alloy electrodes are all above 210 mAh·g -1 with good activation behavior, reaching their maximum capacities after two charge discharge cycles. The maximum capacity (294 mAh·g -1 ) of melt spinning (10 m·s -1 ) alloy electrodes is as the same as that of as cast alloy electrode, and stability of charge discharge cycles of all melt spinning alloy electrodes is better than that of the as cast alloy electrodes. When charged at 600 mA·g -1 , the capacity of melt spinning (10 m·s -1 ) alloy electrode could reach 65% of its maximum capacity about 45 min with high rate discharge capability; but with the cycle number increasing, the stability of its capacity is less than that electrodes of melt spinning rate. 展开更多
关键词 rare earths melt spinning method hydrogen storage alloy electrode electrochemical characteristics columnar structure
下载PDF
OBTAINING THE CRITICAL DRAW RATIO OF DRAW RESONANCE IN MELT SPINNING FOR POWER LAW POLYMER FLUIDS
11
作者 Jinan Cao 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2007年第5期501-507,共7页
A direct difference method has been developed for Non-Newtonian power law fluids to solve the simultaneous non-linear partial differential equations of melt spinning, and to determine the critical draw ratio for draw ... A direct difference method has been developed for Non-Newtonian power law fluids to solve the simultaneous non-linear partial differential equations of melt spinning, and to determine the critical draw ratio for draw resonance. The results show that for shear thin fluids, the logarithm of the critical draw ratio has a well defined linear relationship with the power index for isothermal and uniform tension melt spinning. When the power index approaches zero, the critical draw ratio points at unity, indicating no melt spinning can be processed stably for such fluids. For shear thick fluids, the critical draw ratio increases in a more rapid way with increasing the power index. 展开更多
关键词 Draw resonance Melt spinning Power law fluid Numerical simulation.
下载PDF
MORPHOLOGY OF MELT SPINNING SUPERSATURATED B2 NiAl
12
作者 SUN Baode CHE Xiaozhou +1 位作者 LIN Dongliang ZHOU Yaohe(Department of Materials Engineering,Shanghai Jiaotong University,Shanghai 20030,China)(Department of Materials Science,Shanghai Jiaotong University,Shanghai 200030,China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第2期89-93,共5页
The morphology and structure of melt spinning Ni-33.6at% Al doped with B and RE were investigated.The results show that the alloy consists of L10 martensitic grains and L12 Ni3Al at the grain boundaries when it contai... The morphology and structure of melt spinning Ni-33.6at% Al doped with B and RE were investigated.The results show that the alloy consists of L10 martensitic grains and L12 Ni3Al at the grain boundaries when it contains no B and RE.The addition of 0.11-0.31wt% B can suppress the martensitic transformation and Ni3Al separation at the boundaries,and a supersaturated B2 single phase NiAl is obtained.The addition of 0.05wt% RE can eliminate Ni3Al precipitated at the boundaries and get complete martensite,but 0.2-0.8wt% RE addition can suppress the martensitic transformation, and supersaturated B2 single phase NiAl is obtained.The formation mechanism of supersaturated B2 single phase NiAl has been analyzed. 展开更多
关键词 NIAL supersaturate morphologl melt spinning
下载PDF
Effects of melt spinning process parameters and wheel surface quality on production of 6060 aluminum alloy powders and ribbons
13
作者 SultanÖZTÜRK Sefa Emre SÜNBÜL KürşatİCİN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1169-1182,共14页
The aim of this study is to investigate the surface quality of the melt spinning wheel, which was changed from smooth type to textured structure, to atomize liquid metal to form powders. The effects of melt spinning p... The aim of this study is to investigate the surface quality of the melt spinning wheel, which was changed from smooth type to textured structure, to atomize liquid metal to form powders. The effects of melt spinning process parameters like wheel speed, gas ejection pressure, molten metal temperature, nozzle–wheel gap and wheel surface quality on the morphological and microstructural features of 6060 aluminum alloy powders and ribbons were investigated. It was observed that ribbon type material was obtained with the smooth wheel and the powder was produced with textured type. The sizes of produced ribbons with smooth surface wheel varied in the range of 30-170 μm in thickness, 4-8 mm in width, and 0.5-1 m in length. The average powder size of the powders manufactured using the textured wheel was in the range of 161-274 μm, depending on the process parameters.Increasing the wheel speed, melt temperature and decreasing gas ejection pressure, nozzle-wheel gap resulted in the decrease of both ribbon thickness and powder size. The microstructures of the powders and ribbons were the equiaxed cellular type, and the average grain sizes diminished with decreasing the ribbon thickness and powder size. The maximum cooling rates were 2.00×10^5 and 1.26×10^4 K/s for the ribbon with thickness of 30 μm and for the powder with size of 87 μm, respectively. 展开更多
关键词 melt spinning method 6060 aluminum alloy process parameters textured wheel
下载PDF
Evidence of refilled chamber gas pressure enhancing cooling rate during melt spinning of a Zr_(50)Cu_(40)Al_(10) alloy
14
作者 Hong-wang Yang Peng Zhang +4 位作者 M.J.Tan Yuan Ge Wan-ping Tian Rui-chun Wang Rong-de Li 《China Foundry》 SCIE CAS 2015年第4期299-304,共6页
The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons ... The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The refilled chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, fully crystalline fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle; therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulfilled. 展开更多
关键词 metallic glass amorphous alloy melt spinning glass forming behaviour
下载PDF
Hydrogen storage kinetics of nanocrystalline and amorphous Cu-Nd-added Mg_2Ni-type alloys 被引量:7
15
作者 张羊换 许胜 +3 位作者 翟亭亭 杨泰 袁泽明 赵栋梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3524-3533,共10页
The(Mg24Ni10Cu2)100-x Nd x(x=0, 5, 10, 15, 20) alloys with nanocrystalline and amorphous structures were prepared by melt spinning technology. The structures of the as-cast and spun alloys were characterized by X-ray ... The(Mg24Ni10Cu2)100-x Nd x(x=0, 5, 10, 15, 20) alloys with nanocrystalline and amorphous structures were prepared by melt spinning technology. The structures of the as-cast and spun alloys were characterized by X-ray diffraction(XRD) and high resolution transmission electron microscopy(HRTEM). The effects of Nd content and spinning rate on the structures and hydrogen storage kinetics of the alloys were investigated. The results show that the as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold nanocrystalline and amorphous structures, suggesting that the addition of Nd facilitates the glass forming of the alloys. Both the Nd-addition and the melt spinning significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys. The addition of Nd and melt spinning enhance the diffusion ability of hydrogen atoms in the alloy, but both of them impair the charge-transfer reaction on the surface of the alloy electrode, which makes the high rate discharge ability(HRD) of the alloy electrode first mount up and then go down with the growing Nd content and spinning rate. 展开更多
关键词 hydrogen storage Nd-addition melt spinning phase structures KINETICS
下载PDF
Enhanced hydrogen storage kinetics of nanocrystalline and amorphous Mg_2N-type alloy by substituting Ni with Co 被引量:7
16
作者 张羊换 宋春红 +3 位作者 任慧平 李志刚 胡锋 赵栋梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2002-2009,共8页
In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by m... In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt-spinning technique. The structures of the as-spun alloys were characterized by XRD and TEM. The gaseous and electrochemical hydrogen storage kinetics of the alloys was measured. The results show that the substitution of Co for Ni notably enhances the glass forming ability of the Mg2Ni-type alloy. The amorphization degree of the alloys visibly increases with rising of Co content. Furthermore, the substitution of Co for Ni significantly improves the hydrogen storage kinetics of the alloys. With an increase in the amount of Co substitution from 0 to 0.4, the hydrogen absorption saturation ratio of the as-spun (15 m/s) alloy increases from 81.2% to 84.9%, the hydrogen desorption ratio from 17.60% to 64.79%, the hydrogen diffusion coefficient increases from 1.07×10-11 to 2.79×10-11 cm2/s and the limiting current density increases from 46.7 to 191.7 mA/g, respectively. 展开更多
关键词 Mg2Ni-type alloy substituting Ni with Co melt spinning hydrogen storage kinetics
下载PDF
Effects of Cr_3C_2 content and wheel speed on amorphization behavior of melt-spun SmCo_(7-x)(Cr_3C_2)_x alloys
17
作者 李丽娅 易健宏 +2 位作者 李爱坤 彭元东 夏庆林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1118-1122,共5页
The effects of the Cr3C2 content and wheel speed on the amorphization behavior of the melt-spun SmCo7-x(Cr3C2)x (x=0.10-0.25) alloys were studied systematically by X-ray diffraction analysis (XRD), differential ... The effects of the Cr3C2 content and wheel speed on the amorphization behavior of the melt-spun SmCo7-x(Cr3C2)x (x=0.10-0.25) alloys were studied systematically by X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and magnetic measurements. The ribbon melt-spun at lower wheel speed (20 m/s) has composite structure composed of mostly SmCo7 and a small amount of Sm2Co17R. The grain size of SmCo7 phase decreases with the increase of Cr3C2 content. With the increase of wheel speed, the XRD peaks become lower and accompanied with a broad increase in backgrounds, indicating a considerable decrease in the grain size of the SmCo7 phase. When the wheel speed increases to 40 m/s, SmCo7-x(Cr3C2)x alloys can be obtained in the amorphous state for 0.15≤x≤0.25 with intrinsic coercive Hci of 0.004-0.007 T. The DSC analysis reveals that SmCo7 phase firstly precipitates from the amorphous matrix at 650 °C, followed by the crystallization of Sm2Co17 phase at 770 °C. 展开更多
关键词 SmCo7-type permanent magnets CR3C2 melt spinning amorphization hysteresis loops
下载PDF
Abnormal precipitation behavior in T6 melt-spun AlMgCu ribbon
18
作者 陈忠伟 汤明军 +1 位作者 李士顺 冯宗强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期22-27,共6页
The constituent of precipitations phases of aged melt-spun AlMgCu ribbons was characterized by high-resolution transmission electron microscopy and microhardness test. The cooling rate of as melt-spun ribbon was estim... The constituent of precipitations phases of aged melt-spun AlMgCu ribbons was characterized by high-resolution transmission electron microscopy and microhardness test. The cooling rate of as melt-spun ribbon was estimated to be 1.60×105 K/s from the empirical relation. The samples were aged at 200 &#176;C for 16 h after solution treatment. Two precipitation phases, i.e. Al2CuMg and abnormal amorphous SiO2 were identified in the T6 melt-spun AlMgCu ribbon. The crystal structure and stoichiometric composition of Al2CuMg phase are in good agreement with the reference results [WANG et al (2007; 2005)]. The combined experiments show that the formation of abnormal amorphous SiO2 appears to be associated with the higher cooling rate in melt-spinning process and has no significant effect on the peak hardness. 展开更多
关键词 AlCuMg alloy melt spinning precipitation amorphous
下载PDF
Effects of Cr content on electrochemical properties of melt-spun Al_(75-x)Si_(25)Cr_x alloy anodes for lithium-ion batteries
19
作者 梁普 张林萍 +5 位作者 汪飞 孙占波 胡青 杨森 王力群 宋晓平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1393-1400,共8页
Melt-spun Al75-xSi25Crx (x=2, 4, 7, 10, mole fraction, %) alloys were investigated as anode materials for lithium-ion batteries. The as-quenched ribbons consist of nano-grains and metallic glass. The electrochemical... Melt-spun Al75-xSi25Crx (x=2, 4, 7, 10, mole fraction, %) alloys were investigated as anode materials for lithium-ion batteries. The as-quenched ribbons consist of nano-grains and metallic glass. The electrochemical measurements reveal that an activation behavior is exhibited in the anodes. The specific capacity of the A173Si25Cr2 anodes can reach a maximum of 1119 mA.h/g and maintain at 586 mA·hg after 30 cycles. A more stable cycle performance is shown and a capacity loss is only 24% over 30 cycles for Al71Si25Cr4. The intermetallic compounds with Li cannot be detected in the lithiated anodes. After the ribbons were annealed, the specific capacities become much lower due to the formation of inert Al13SiaCr4, and an A1Li phase can be tested in the lithiated anodes. The Cr dissolved in the non-equilibrium alloys causes low lithiation activity and strong structure stability, which could be the main reason of the activation and a restriction of structure evolution. 展开更多
关键词 lithium-ion battery Al-Si-Cr alloy melt spinning electrochemical property lithiation activity
下载PDF
Effect of high magnetic field on the crystallization of Nd_2Fe_(14)B/α-Fe nanocomposite magnets 被引量:6
20
作者 WANG Zhanyong XU Hui +2 位作者 NI Jiansen LI Qiang ZHOU Bangxin 《Rare Metals》 SCIE EI CAS CSCD 2006年第4期337-341,共5页
Nd8.1Dy0.9Fe76.95Co8.55B5.5 nanocomposite magnets annealed with and without a 10 T magnetic field were investigated in this article. The ribbons with coexisting amorphous and crystalline phases were selected to do thi... Nd8.1Dy0.9Fe76.95Co8.55B5.5 nanocomposite magnets annealed with and without a 10 T magnetic field were investigated in this article. The ribbons with coexisting amorphous and crystalline phases were selected to do this study. The resuits of Moessbauer spectroscopy revealed that the content of α--Fe increased when annealed in high strength magnetic field. The size of the grains also increased considerably after the application of magnetic annealing. All these led to the decrease of the magnetic properties, especially the coercivity of the ribbons. 展开更多
关键词 magnetic materials nanocomposite magnet CRYSTALLIZATION magnetic field melt spinning
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部