期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
In-situ investigation of melting characteristics of waste selective catalytic reduction catalysts during harmless melting treatment
1
作者 Hao ZHOU Yu-jian XING +1 位作者 Jia-nuo XU Ming-xi ZHOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第3期207-221,共15页
Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste... Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste SCR catalysts.The melting characteristics and mineral phase transformation of waste SCR catalysts blended with three different groups of additives were explored by heating stage microscopy,thermogravimetric analysis/differential scanning calorimetry(TG/DSC) analysis,thermodynamic simulation,and X-ray diffraction(XRD) analysis;heavy metal leaching toxicity was tested by inductively coupled plasma-atomic emission spectrometry(I CP-AES) analysis.The results indicated that the melting point of waste SCR catalysts can be effectively reduced with proper additives.The additive formula of 39.00% Fe2 O3(in weight),6.50% CaO,3.30% SiO2,and 1.20% Al2 O3 achieves the optimal fluxing behavior,significantly decreasing the initial melting temperature from 1223℃ to1169℃.Furthermore,the whole heating process of waste SCR catalysts can be divided into three stages:the solid reaction stage,the sintering stage,and the primary melting stage.The leaching concentrations of V,As,Pb,and Se are significantly reduced,from 10.64,1.054,0.195,and 0.347 mg/L to 0.178,0.025,0.048,and 0.003 mg/L,respectively,much lower than the standard limits after melting treatment,showing the strong immobilization capacity of optimal additives for heavy metals in waste SCR catalysts.The results demonstrate the feasibility of harmless melting treatments for waste SCR catalysts with relatively low energy consumption,providing theoretical support for a novel method of disposing of hazardous waste SCR catalysts. 展开更多
关键词 Waste selective catalytic reduction(SCR)catalyst Thermal melting treatment melting characteristics ADDITIVES Heating stage microscope Leaching toxicity
原文传递
Effect of overheating-induced minor addition on Zr-based metallic glasses
2
作者 杨福 薄振兴 +7 位作者 黄瑶 王雨田 孙博阳 鲁振 孙保安 柳延辉 汪卫华 潘明祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期118-125,共8页
Melt treatment is well known to have an important influence on the properties of metallic glasses(MGs).However,for the MGs quenched from different melt temperatures with a quartz tube,the underlying physical origin re... Melt treatment is well known to have an important influence on the properties of metallic glasses(MGs).However,for the MGs quenched from different melt temperatures with a quartz tube,the underlying physical origin responsible for the variation of properties remains poorly understood.In the present work,we systematically studied the influence of melt treatment on the thermal properties of a Zr50Cu36Al14 glass-forming alloy and unveiled the microscopic origins.Specifically,we quenched the melt at different temperatures ranging from 1.1Tl to 1.5Tl(Tl is the liquidus temperature)to obtain melt-spun MG ribbons and investigated the variation of thermal properties of the MGs upon heating.We found that glass transition temperature,Tg,increases by as much as 36 K,and the supercooled liquid region disappears in the curve of differential scanning calorimetry when the melt is quenched at a high temperature up to 1.5Tl.The careful chemical analyses indicate that the change in glass transition behavior originates from the incorporation of oxygen and silicon in the molten alloys.The incorporated oxygen and silicon can both enhance the interactions between atoms,which renders the cooperative rearrangements of atoms difficult,and thus enhances the kinetic stability of the MGs. 展开更多
关键词 metallic glass thermal properties melt treatment OVERHEATING oxygen content
下载PDF
Effect of melt superheating treatment on the cast structure of K465 nickel-based superalloy 被引量:5
3
作者 Pei, Zhongye Zhao, Minghan +3 位作者 Tian, Yanwen Li, Juntao Chen, Xingfu Wu, Jiantao 《Rare Metals》 SCIE EI CAS CSCD 2009年第2期193-196,共4页
The cast structure of a K465 nickel-based superalloy with different temperatures of melt superheating treatment was studied. It is shown that melt superheating treatment plays a significant role in the grain size and ... The cast structure of a K465 nickel-based superalloy with different temperatures of melt superheating treatment was studied. It is shown that melt superheating treatment plays a significant role in the grain size and carbide morphology. With increasing melt superheating temperature (below 2023 K),the grain size increases obviously and the carbide morphology is changed from a blocky to a script-like shape. However,when the melt superheating temperature is between 2023 K and 2123 K,the grain size decreases gr... 展开更多
关键词 SUPERALLOY structure melt superheating treatment GRAIN CARBIDE
下载PDF
Effects of Melt Thermal Treatment on A356 Alloy 被引量:2
4
作者 Jun WANG, Shuxian HE, Baode SUN and Yaohe ZHOUSchool of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期152-154,共3页
To increase the casting quality of hypoeutectic Al-Si alloys, the effects of melt thermal treatment on the solidification structure of the A356 alloy were analyzed by a factorial experiment, in which the overheated me... To increase the casting quality of hypoeutectic Al-Si alloys, the effects of melt thermal treatment on the solidification structure of the A356 alloy were analyzed by a factorial experiment, in which the overheated melt was mixed with the low temperature melt. Experimental results show that the elongation ratio and strength of the treated samples increase remarkably compared with the control sample. The primary dendrite size reduces dramatically and the dendrite changes from columnar to equiaxed, with a little change of the secondary dendrite arm spacing (SDAS). Combined with the measurement of the nucleation undercooling, it is concluded that the solidification structure and refining effect are dependent primarily on the low temperature melt. The refining mechanism is believed as a result of the multiplication of the nuclei in the melt thermal treatment procedure. 展开更多
关键词 A356 Melt thermal treatment Solidification structure
下载PDF
Effect of Process Parameters on Porosity in Aluminum Lost Foam Process 被引量:7
5
作者 Kiyoung KIM Kyongwhoan LEE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期681-685,共5页
Porosity is a main defect in aluminum alloy castings, which is also thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring. Fu... Porosity is a main defect in aluminum alloy castings, which is also thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring. Fundamental experiments were carried out to evaluate the effect of process parameters such as the melt treatment, the cooling rate and the density of expanded polystyrene (EPS) foam on porosity in A356.2 bar casting. The effect of melt treatment including degassing and refining was investigated. The effect of cooling rate was also evaluated by changing the mold packing material such as the silica sand, the zircon sand and the steel shots. Gas entrapment due to the turbulent metal flow during mold filling in conventional molding process results in porosity. Mold filling sequence in lost foam process is different from that in conventional molding process. The effect of molten metal flow was estimated by comparing the density of the casting by conventional sodium silicate molding with that by lost foam process. Density measurement was conducted to analyze the extent of porosity in the casting. Source of the porosity in lost foam process can be divided into two factors, i.e. turbulence in molten metal flow and entraining residue or gas from the pattern during pouring. 展开更多
关键词 Lost foam process Mold packing material EPS foam POROSITY Melt treatment
下载PDF
Effect of Squeeze Cast Process Parameters on Fluidity of Hypereutectic Al-Si Alloy
6
作者 Jong-Kyu Baek Hae-Wook Kwon 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期7-11,共5页
The effects of processing variables on the fluidity of hypereutectic Al-Si alloy melt during squeeze casting were investigated.The maximum fluidity of Al-16.0%Si alloy during squeeze casting was obtained under the app... The effects of processing variables on the fluidity of hypereutectic Al-Si alloy melt during squeeze casting were investigated.The maximum fluidity of Al-16.0%Si alloy during squeeze casting was obtained under the applied pressure of 30 MPa.The fluidity increased with superheat.The fluidity increased with silicon content in the range from 12.0% to 20.0%.That was decreased respectively by eutectic modification and primary silicon refinement. 展开更多
关键词 Squeeze casting Al-alloy FLUIDITY Melt treatment
下载PDF
Effect of Melt Superheating Treatment on Directional Solidification Interface Morphology of Multi-component Alloy 被引量:8
7
作者 Changshuai Wang Jun Zhang Lin Liu Hengzhi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第7期668-672,共5页
The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteri... The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteristic and S/L interface stability. The results indicate that the interface morphology is not only related to the withdrawal velocity (R) but also to the melt superheating temperature (Ts) when the thermal gradient of solidification interface remains constant for different Ts with appropriate superheating treatment regulation. The interface morphology changes from cell to plane at R of 1.1 μm/s when Ts increases from 1500°C to 1650°C, and maintains plane with further elevated Ts of 1750°C. However, the interface morphology changes from coarse dendrite to cell and then to cellular dendrite at R of 2.25 μm/s when Ts increases from 1500°C to 1650°C and then to 1750°C. It is proved that the solidification onset temperature and the solidification interval undergo the nonlinear variation when Ts increases from 1500°C to 1680°C, and the turning point is 1650°C at which the solidification onset temperature and the solidification interval are all minimum. This indicates that the melt superheating treatment enhances the solidification interface stability and has important effect on the solidification characteristics. 展开更多
关键词 Melt superheating treatment Directional solidification interface morphology Solidification characteristics Multi-component alloy
原文传递
Effect of melt superheating treatment on crystallization behavior and magnetic properties of melt-spun Fe-rich Nd-Fe-B ribbons 被引量:3
8
作者 盛洪超 曾燮榕 +1 位作者 胡强 邓飞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第2期282-285,共4页
Melt-spun Nd7Fe90B3 ribbons were prepared under different melt treatment conditions,i.e.,the melt temperature was varied prior to ejection onto the quenching wheel.The microstructure characteristics,crystallization be... Melt-spun Nd7Fe90B3 ribbons were prepared under different melt treatment conditions,i.e.,the melt temperature was varied prior to ejection onto the quenching wheel.The microstructure characteristics,crystallization behavior,and subsequent magnetic properties of α-Fe/Nd2Fe14B-based exchange-spring magnets were investigated using X-ray diffraction,differential scanning calorimeter,transmission electron microscopy,and vibrating sample magnetometer.It was shown that melt spinning at different quenching temperat... 展开更多
关键词 microstructure nanocomposite magnets melt superheating treatment rare earths
原文传递
A new technology for treating waste incineration fly ash by shaft furnace 被引量:1
9
作者 Cui Wang Long-zhi Chen +3 位作者 Zheng-jian Liu Yang Li Yao-zu Wang Ke-xin Jiao 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第7期773-784,共12页
At present,lots of municipal solid wastes(MSWs)are treated by incineration technology,which produces a large amount of fly ash that needs to be treated innocuously.A new method of using metallurgical shaft furnace to ... At present,lots of municipal solid wastes(MSWs)are treated by incineration technology,which produces a large amount of fly ash that needs to be treated innocuously.A new method of using metallurgical shaft furnace to treat the MSW fly ash was thus proposed,and some research was done for this method.Firstly,the basic physical properties of MSW fly ash were analyzed,and then,the briquetting experiment and melting treatment of MSW fly ash were explored.In the process of briquet-ting,the influence of different factors(water content,cement content,forming pressure and curing time)on the compressive strength of the briquettes was studied.The results showed that with the increase in water content,cement content,forming pressure and curing time,the compressive strength of the briquettes increased correspondingly.However,the compressive strength of the briquettes showed a downward trend when these values exceeded a specific range.In the melting experiment,it was found that some heavy metals(such as Cr,Be and Ba)could be solidified in the slag when the fly ash was treated at 1450℃ for 50 min,and the leaching toxicity of heavy metals was lower than the landfill standard of waste in China.At the same time,the decomposition rate of dioxins in fly ash reached 99.66%after melting treatment. 展开更多
关键词 Fly ash Shaft furnace Compressive strength melting treatment Heavy metal DIOXIN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部