Real-time performance and accuracy are two most challenging requirements in virtual surgery training.These difficulties limit the promotion of advanced models in virtual surgery,including many geometric and physical m...Real-time performance and accuracy are two most challenging requirements in virtual surgery training.These difficulties limit the promotion of advanced models in virtual surgery,including many geometric and physical models.This paper proposes a physical model of virtual soft tissue,which is a twist model based on the Kriging interpolation and membrane analogy.The proposed model can quickly locate spatial position through Kriging interpolation method and accurately compute the force change on the soft tissue through membrane analogy method.The virtual surgery simulation system is built with a PHANTOM OMNI haptic interaction device to simulate the torsion of virtual stomach and arm,and further verifies the real-time performance and simulation accuracy of the proposed model.The experimental results show that the proposed soft tissue model has high speed and accuracy,realistic deformation,and reliable haptic feedback.展开更多
基金This work was supported in part by the National Nature Science Foundation of China(No.61502240,61502096,61304205,61773219)Natural Science Foundation of Jiangsu Province(BK20150634,BK20141002).
文摘Real-time performance and accuracy are two most challenging requirements in virtual surgery training.These difficulties limit the promotion of advanced models in virtual surgery,including many geometric and physical models.This paper proposes a physical model of virtual soft tissue,which is a twist model based on the Kriging interpolation and membrane analogy.The proposed model can quickly locate spatial position through Kriging interpolation method and accurately compute the force change on the soft tissue through membrane analogy method.The virtual surgery simulation system is built with a PHANTOM OMNI haptic interaction device to simulate the torsion of virtual stomach and arm,and further verifies the real-time performance and simulation accuracy of the proposed model.The experimental results show that the proposed soft tissue model has high speed and accuracy,realistic deformation,and reliable haptic feedback.