期刊文献+
共找到219篇文章
< 1 2 11 >
每页显示 20 50 100
Designing Membrane Electrode Assembly for Electrochemical CO_(2)Reduction:a Review
1
作者 Xuerong Wang Shulin Zhao +4 位作者 Tao Guo Luyao Yang Qianqian Zhao Yuping Wu Yuhui Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期117-129,共13页
Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in explo... Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO_(2) RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO_(2) conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diff usion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the eff ects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO_(2) electrochemical reduction. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS membrane electrode assembly
下载PDF
Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti_(3)C_(2)T_(x)MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs
2
作者 Yihui Li Juan Xie +10 位作者 Ruofei Wang Shugang Min Zewen Xu Yangjian Ding Pengcheng Su Xingmin Zhang Liyu Wei Jing‑Feng Li Zhaoqiang Chu Jingyu Sun Cheng Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期394-414,共21页
Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion... Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics. 展开更多
关键词 Phosphorene Nanopiezocomposite Piezo-electrochemical coupling membrane electrode assembly Lithium-ion storage
下载PDF
Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells 被引量:2
3
作者 Zhongxin Song Junjie Li +4 位作者 Qianling Zhang Yongliang Li Xiangzhong Ren Lei Zhang Xueliang Sun 《Carbon Energy》 SCIE CSCD 2023年第7期38-56,共19页
A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel... A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel cell-related electrochemical reactions,their ever-increasing price considerably hinders their industrial application.Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts,and this allows for the use of fewer catalysts,saving greatly on the cost.Thus,single-atom catalysts(SACs)with an atom utilization efficiency of 100%have been widely developed,which show remarkable performance in fuel cells.In this review,we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications.First,we will introduce several effective routes for the synthesis of SACs.The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity.Then,we will systematically summarize the application of Pt group metal(PGM)and nonprecious group metal(non-PGM)catalysts in membrane electrode assembly of fuel cells.This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future. 展开更多
关键词 fuel cells membrane electrode assembly oxygen reduction reaction reaction mechanism single-atom catalysts
下载PDF
Enhancement of current density using effective membranes electrode assemblies for water electrolyser system 被引量:1
4
作者 Swaminathan Seetharaman Subash Chandrabose Raghu Kambiz Ansari Mahabadi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期77-84,共8页
The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focus... The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focuses on the development of sulphonated polyether ether ketone(SPEEK) based membranes and caesium salt of silico-tungstic acid(Cs Si WA) matrix compared with one of the transition metal oxides such as titanium dioxide(TiO2), silicon dioxide(SiO2) and zirconium dioxide(ZrO2). The resultant membranes have been characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, ion exchange capacity(IEC), water uptake and atomic force microscopy. Comparative studies on the performance of MEAs were also conducted utilizing impregnation-reduction and conventional brush coating methods. The PEM electrolysis performance of SPEEK-Cs Si WA-ZrO2 composite membrane was more superior than that of other membranes involved in this study. Electrochemical characterization shows that a maximum current density of 1.4 A/cm^2 was achieved at 60 °C, explained by an increased concentration of protonic sites available at the interface. 展开更多
关键词 Composite membrane membrane electrode assembly Impregnation reduction method Brush coating method Electrolysis
下载PDF
Performance Investigation of Membrane Electrode Assemblies for High Temperature Proton Exchange Membrane Fuel Cell
5
作者 Huaneng Su Sivakumar Pasupathi +2 位作者 Bernard Bladergroen Vladimir Linkov Bruno G. Pollet 《Journal of Power and Energy Engineering》 2013年第5期95-100,共6页
Different types of ABPBI (poly(2,5-benzimidazole)) membranes and polymer binders were evaluated to investigate the performance of MEAs for high temperature proton exchange membrane fuel cell (HT-PEMFC). The properties... Different types of ABPBI (poly(2,5-benzimidazole)) membranes and polymer binders were evaluated to investigate the performance of MEAs for high temperature proton exchange membrane fuel cell (HT-PEMFC). The properties of the prepared MEAs were evaluated and analyzed by polarization curve, electrochemistry impedance spectroscopy (EIS), cyclic voltammetry (CV) and durability test. The results showed that MEA with modified ABPBI membrane (AM) has satisfactory performance and durability for fuel cell application. Compare to conventional PBI or Nafion binders, polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) are more attractive as binders in the catalyst layer (CL) of gas diffusion electrode (GDE) for HT-PEMFC. 展开更多
关键词 High Temperature PROTON EXCHANGE membrane Fuel Cell ABPBI (Poly(2 5-Benzimidazole)) Polymer Binders Gas Diffusion electrode membrane electrode assembly
下载PDF
Probing the Efficiency of PPMG-Based Composite Electrolytes for Applications of Proton Exchange Membrane Fuel Cell
6
作者 Shakeel Ahmed Faizah Altaf +6 位作者 Safyan Akram Khan Sumaira Manzoor Aziz Ahmad Muhammad Mansha Shahid Ali Ata-ur-Rehman Karl Jacob 《Transactions of Tianjin University》 EI CAS 2024年第3期262-283,共22页
PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was em... PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was employed as the sulfonating agent to functionalize the external surface of the inorganic filler,i.e.,graphene oxide.The proton conductivities of the newly prepared proton exchange membranes(PEMs)were increased by increasing the temperature and content of sulfonated graphene oxide(SGO),i.e.,ranging from 0.025 S/cm to 0.060 S/cm.The induction of the optimum level of SGO is determined to be an excellent route to enhance ionic conductivity.The single-cell performance test was conducted by sandwiching the newly prepared PEMs between an anode(0.2 mg/cm^(2) Pt/Ru)and a cathode(0.2 mg/cm^(2) Pt)to prepare membrane electrode assemblies,followed by hot pressing under a pressure of approximately 100 kg/cm^(2) at 60℃for 5–10 min.The highest power densities achieved with PPMG PEMs were 14.9 and 35.60 mW/cm^(2) at 25℃and 70℃,respectively,at ambient pressure with 100%relative humidity.Results showed that the newly prepared PEMs exhibit good electrochemical performance.The results indicated that the prepared composite membrane with 6 wt%filler can be used as an alternative membrane for applications of high-performance proton exchange membrane fuel cell. 展开更多
关键词 Proton exchange membrane fuel cell Sulfonated graphene oxide POLYVINYLPYRROLIDONE Solution casting membrane electrode assembly Fuel cell performance
下载PDF
PtNi-W/C with Atomically Dispersed Tungsten Sites Toward Boosted ORR in Proton Exchange Membrane Fuel Cell Devices 被引量:4
7
作者 Huawei Wang Jialong Gao +13 位作者 Changli Chen Wei Zhao Zihou Zhang Dong Li Ying Chen Chenyue Wang Cheng Zhu Xiaoxing Ke Jiajing Pei Juncai Dong Qi Chen Haibo Jin Maorong Chai Yujing Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期238-256,共19页
The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings.This work shows a hybrid electrocatalyst consisting of PtNi-W... The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings.This work shows a hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites by a two-step straightforward method.Single-atomic W can be found on the carbon surface,which can form protonic acid sites and establish an extended proton transport network at the catalyst surface.When implemented in membrane electrode assembly as cathode at ultra-low loading of 0.05 mgPt cm^(−2),the peak power density of the cell is enhanced by 64.4%compared to that with the commercial Pt/C catalyst.The theoretical calculation suggests that the single-atomic W possesses a favorable energetics toward the formation of*OOH whereby the intermediates can be efficiently converted and further reduced to water,revealing a interfacial cascade catalysis facilitated by the single-atomic W.This work highlights a novel functional hybrid electrocatalyst design from the atomic level that enables to solve the bottle-neck issues at device level. 展开更多
关键词 Fuel cells membrane electrode assembly PGM catalyst Synergistic catalysis Oxygen reduction
下载PDF
Technical factors affecting the performance of anion exchange membrane water electrolyzer
8
作者 Xun Zhang Yakang Li +3 位作者 Wei Zhao Jiaxin Guo Pengfei Yin Tao Ling 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2259-2269,共11页
Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind ... Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers.Therefore,breaking through the technical barriers of AEM electrolyzers is critical.On the basis of the analysis of the electrochemical performance tested in a single cell,electrochemical impedance spectroscopy,and the number of active sites,we evaluated the main technical factors that affect AEM electrolyzers.These factors included catalyst layer manufacturing(e.g.,catalyst,carbon black,and anionic ionomer)loadings,membrane electrode assembly,and testing conditions(e.g.,the KOH concentration in the electrolyte,electrolyte feeding mode,and operating temperature).The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed.The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons,ions,and gas-phase products involved in electrolysis.Based on the study results,the performance and stability of AEM electrolyzers were significantly improved. 展开更多
关键词 hydrogen production anion exchange membrane water electrolyzer CATALYST membrane electrode assembly
下载PDF
Surface promotion of copper nanoparticles with alumina clusters derived from layered double hydroxide accelerates CO_(2)reduction to ethylene in membrane electrode assemblies 被引量:3
9
作者 Jie Zhang Xinnan Mao +6 位作者 Binbin Pan Jie Xu Xue Ding Na Han Lu Wang Yuhang Wang Yanguang Li 《Nano Research》 SCIE EI CSCD 2023年第4期4685-4690,共6页
Electrochemical CO_(2)reduction has the vast potential to neutralize CO_(2)emission and valorizes this greenhouse gas into chemicals and fuels under mild conditions.Its commercial realization hinges on catalyst innova... Electrochemical CO_(2)reduction has the vast potential to neutralize CO_(2)emission and valorizes this greenhouse gas into chemicals and fuels under mild conditions.Its commercial realization hinges on catalyst innovation as well as device engineering for enabling reactions at industrially relevant conditions.Copper has been widely examined for the selective production of multicarbon chemicals particularly ethylene,while there is still a substantial gap between the expected and the attainable.In this work,we report that the surface promotion of copper with alumina clusters is a viable strategy to enhance its electrocatalytic performance.AlOx-promoted Cu catalyst is derived from Cu-Al layered double hydroxide nanosheets after alkali etching and cathodic conversion.It can catalyze CO_(2)to ethylene and multicarbon products with great selectivity and stability far superior to pristine copper in both an H-cell and a zero-gap membrane electrode assembly(MEA)electrolyzer.The surface promotion effect is understood via computational simulations showing that alumina clusters can stabilize key reaction intermediates(*COOH and*OCCOH)along the reaction pathway. 展开更多
关键词 electrochemical CO_(2)reduction surface promotion layered double hydroxide ETHYLENE membrane electrode assembly
原文传递
Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells 被引量:9
10
作者 Ruoyi Deng Zhangxun Xia +2 位作者 Ruili Sun Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期33-39,共7页
Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cell... Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cells (PEMFCs).Herein,we report the design and construction of a nanostructured ultrathin catalyst layer with ordered Pt nanotube arrays,which were obtained by a hard-template strategy based on ZnO,via hydrothermal synthesis and magnetron sputtering for PEMFC application.Because of the crystallographically preferential growth of Pt (111) facets,which was attributed to the structural effects of ZnO nanoarrays on the Pt nanotubes,the catalyst layers exhibit obviously higher electrochemical activity with remarkable enhancement of specific activity and mass transport compared with the state-of-the-art randomly distributed Pt/C catalyst layer.The PEMFC fabricated with the as-prepared catalyst layer composed of optimized Pt nanotubes with an average diameter of 90(±10) nm shows excellent performance with a peak power density of 6.0W/mgPt at 1 A/cm^2,which is 11.6%greater than that of the conventional Pt/C electrode. 展开更多
关键词 Catalyst layer membrane electrode assembly PLATINUM NANOTUBE arrays Fuel cells
下载PDF
High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly 被引量:3
11
作者 Bing Li Jue Wang +5 位作者 Xin Gao Congwei Qin Daijun Yang Hong Lv Qiangfeng Xiao Cunman Zhang 《Nano Research》 SCIE EI CAS CSCD 2019年第2期281-287,共7页
Octahedral PtNi/C catalysts have demonstrated superior catalytic performance in oxyge n reduction reacti on (ORR) over commercial Pt/C with rotating disk electrode (RDE). However, it is not trivial to translate such p... Octahedral PtNi/C catalysts have demonstrated superior catalytic performance in oxyge n reduction reacti on (ORR) over commercial Pt/C with rotating disk electrode (RDE). However, it is not trivial to translate such promising results to real-world membrane-electrode assembly (MEA). In this work, we have synthesized octahedral PtNi/C catalysts using poly(diallyldimethylammonium chloride)(PDDA) as a capping age nt and in vestigated their performance from RDE to MEA. In RDE, mass activity and specific activity of the optimized octahedral PtNi/C catalyst for oxygen reduction reaction (ORR) are nearly 19 and 28 times high of the state-of-the-art commercial Pt/C, respectively. At MEA level, the octahedral PtNi/C catalyst exhibits excelle nt power generation performa nee and durability paired with commercial Pt/C ano de. Its cell voltage at 1,000mA·cm^-2 reaches 0.712 V, and maximum power density is 881.6 mW·cm^-2 and its performance attenuation is also less, around 11.8% and 7% under galvanostatic condition of 1,000 mA·cm^-2 for 100 h. Such results are investiaged by thermodynamic analysis and fundametal performance modeling, which indicate the single cell performance can be further improved by reducing the size of PtNi/C catalyst agglomerates. Such encouraging results have demonstrated the feasibility to convey the superior performance of octahedral PtNi/C from RDE to MEA. 展开更多
关键词 PROTON exchange membrane fuel cell (PEMFC) OCTAHEDRAL PtNi/C oxygen reduction reaction (ORR) durability membrane electrode assembly (mea)
原文传递
High-performance proton exchange membrane fuel cell with ultra-low loading Pt on vertically aligned carbon nanotubes as integrated catalyst layer 被引量:2
12
作者 Qing Hao Meng Chao Hao +4 位作者 Bowen Yan Bin Yang Jia Liu Pei Kang Shen Zhi Qun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期497-506,I0013,共11页
Reducing a Pt loading with improved power output and durability is essential to promote the large-scale application of proton exchange membrane fuel cells(PEMFCs).To achieve this goal,constructing optimized structure ... Reducing a Pt loading with improved power output and durability is essential to promote the large-scale application of proton exchange membrane fuel cells(PEMFCs).To achieve this goal,constructing optimized structure of catalyst layers with efficient mass transportation channels plays a vital role.Herein,PEMFCs with order-structured cathodic electrodes were fabricated by depositing Pt nanoparticles by Ebeam onto vertically aligned carbon nanotubes(VACNTs)growth on Al foil via plasma-enhanced chemical vapor deposition.Results demonstrate that the proportion of hydrophilic Pt-deposited region along VACNTs and residual hydrophobic region of VANCTs without Pt strongly influences the cell performance,in particular at high current densities.When Pt nanoparticles deposit on the top depth of around 600 nm on VACNTs with a length of 4.6μm,the cell shows the highest performance,compared with others with various lengths of VACNTs.It delivers a maximum power output of 1.61 W cm^(-2)(H_(2)/O_(2),150 k Pa)and 0.79 W cm^(-2)(H_(2)/Air,150 k Pa)at Pt loading of 50μg cm^(-2),exceeding most of previously reported PEMFCs with Pt loading of<100μg cm^(-2).Even though the Pt loading is down to 30μg cm^(-2)(1.36 W cm^(-2)),the performance is also better than 100μg cm^(-2)(1.24 W cm^(-2))of commercial Pt/C,and presents better stability.This excellent performance is critical attributed to the ordered hydrophobic region providing sufficient mass passages to facilitate the fast water drainage at high current densities.This work gives a new understanding for oxygen reduction reaction occurred in VACNTs-based ordered electrodes,demonstrating the most possibility to achieve a substantial reduction in Pt loading<100μg cm^(-2) without sacrificing in performance. 展开更多
关键词 Proton exchange membrane fuel cells Order-structured catalyst layer Vertically aligned carbon nanotubes Ultra-low Pt loading membrane electrode assembly
下载PDF
Novel phosphonated polymer without anhydride formation for proton exchange membrane fuel cells
13
作者 Mrinmay Mandal 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期469-471,共3页
Proton exchange membrane fuel cells(PEMFCs)are regarded as one of the most promising clean energy technology because of their high energy density,silent emission-free operation,and wide applications[1].Recently,anion ... Proton exchange membrane fuel cells(PEMFCs)are regarded as one of the most promising clean energy technology because of their high energy density,silent emission-free operation,and wide applications[1].Recently,anion exchange membrane fuel cells(AEMFCs)has emerged as an alternative to PEMFCs. 展开更多
关键词 Phosphonated polymers Proton exchange membrane membrane electrode assembly Fuel cell DURABILITY
下载PDF
Segmented tomographic evaluation of structural degradation of carbon support in proton exchange membrane fuel cells
14
作者 Jung A.Hong Min-Hyoung Jung +10 位作者 Sung Yong Cho Eun-Byeol Park Daehee Yang Young-Hoon Kim Sang-Hyeok Yang Woo-Sung Jang Jae Hyuck Jang Hyo June Lee Sungchul Lee Hu Young Jeong Young-Min Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期359-367,I0010,共10页
The variation of the three-dimensional(3D)structure of the membrane electrode of a fuel cell during proton exchange cycling involves the corrosion/compaction of the carbon support.The increasing degradation of the car... The variation of the three-dimensional(3D)structure of the membrane electrode of a fuel cell during proton exchange cycling involves the corrosion/compaction of the carbon support.The increasing degradation of the carbon structure continuously reduces the electrocatalytic performance of proton exchange membrane fuel cells(PEM-FCs).This phenomenon can be explained by performing 3D tomographic analysis at the nanoscale.However,conventional tomographic approaches which present limited experimental feasibility,cannot perform such evaluation and have not provided sufficient structural information with statistical significance thus far.Therefore,a reliable methodology is required for the 3D geometrical evaluation of the carbon structure.Here,we propose a segmented tomographic approach which employs pore network analysis that enables the visualization of the geometrical parameters corresponding to the porous carbon structure at a high resolution.This approach can be utilized to evaluate the 3D structural degradation of the porous carbon structure after cycling in terms of local surface area,pore size distribution,and their 3D networking.These geometrical parameters of the carbon body were demonstrated to be substantially reduced owing to the cycling-induced degradation.This information enables a deeper understanding of the degradation phenomenon of carbon supports and can contribute to the development of stable PEM-FC electrodes. 展开更多
关键词 Electron tomography Fuel cell Proton exchange membrane membrane electrode assembly Carbon corrosion
下载PDF
Boosting the optimization of membrane electrode assembly in proton exchange membrane fuel cells guided by explainable artificial intelligence
15
作者 Rui Ding Wenjuan Yin +6 位作者 Gang Cheng Yawen Chen Jiankang Wang Ran Wang Zhiyan Rui Jia Li Jianguo Liu 《Energy and AI》 2021年第3期217-227,共11页
The utilization of environmentally friendly hydrogen energy requires proton exchange membrane fuel cell de-vices that offer high power output while remaining affordable.However,the current optimization of their key co... The utilization of environmentally friendly hydrogen energy requires proton exchange membrane fuel cell de-vices that offer high power output while remaining affordable.However,the current optimization of their key component,i.e.,the membrane electrode assembly,is still based on intuition-guided,inefficient trial-and-error cycles due to its complexity.Hence,we introduce an innovative,explainable artificial intelligence(AI)tool trained as a reliable assistant for a variable analysis and optimum-value prediction.Among the 8 algorithms considered,the surrogate model built with an artificial neural network achieves high replaceability in the experimentally validated multiphysics simulation(R^(2)=0.99845)and a much lower computational cost.For interpretation,partial dependence plots and the Shapley value method are applied to black-box models to intelligently simulate the impact of each parameter on performance.These methods show that a tradeoff existed in the catalyst layer thickness.The AI-guided optimization suggestions regarding catalyst loading and the ion-omer content are fully supported by the experimental results,and the final product achieves 3.2 times the Pt utilization of commercial products with a time cost orders of magnitude smaller. 展开更多
关键词 Machine learning Proton exchange membrane fuel cells Artificial intelligence membrane electrode assembly Multiphysics simulation
原文传递
氢燃料电池关键零部件MEA的选型验证
16
作者 李振林 《标准科学》 2023年第S01期151-157,共7页
氢燃料电池电堆降本举措是我国氢燃料电池行业发展的重中之重,关键零部件的国产化则是诸多降本举措中的重要环节。本文通过研究国产MEA选型和验证的案例,从燃料电池膜电极的发电性能、低温性能以及衰减和耐久等几个方面,对燃料电池工程... 氢燃料电池电堆降本举措是我国氢燃料电池行业发展的重中之重,关键零部件的国产化则是诸多降本举措中的重要环节。本文通过研究国产MEA选型和验证的案例,从燃料电池膜电极的发电性能、低温性能以及衰减和耐久等几个方面,对燃料电池工程化过程中MEA关键技术指标验证和确定提供了指导。 展开更多
关键词 质子交换膜燃料电池(PEMFC) 性能验证 mea(membrane electrode assembly)
下载PDF
加长加宽的PEMFC电堆应力分布一致性仿真与优化
17
作者 张智明 黄刚强 +2 位作者 任辉 陈志浩 章桐 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期127-134,共8页
质子交换膜燃料电池可以通过扩大电堆的活性区域反应面积来获得更高的功率,但电堆反应面积扩大后,容易导致膜电极应力分布的不均匀性增加,从而引起燃料电池电化学性能的下降.为此,本研究设计了4种不同结构尺寸的燃料电池电堆,结合等效... 质子交换膜燃料电池可以通过扩大电堆的活性区域反应面积来获得更高的功率,但电堆反应面积扩大后,容易导致膜电极应力分布的不均匀性增加,从而引起燃料电池电化学性能的下降.为此,本研究设计了4种不同结构尺寸的燃料电池电堆,结合等效刚度模型法和有限元软件,分析了扩大反应面积的电堆结构对膜电极应力分布均匀性的影响,并进一步优化电堆内钢带的安装位置,以提升电堆内部接触压力分布均匀性.研究结果表明,膜电极接触压力分布的均匀性对反应区域宽度的变化较为敏感,当活性区域尺寸加宽,电堆内部活性区域的平均应力标准差增加了23.2%.而当活性区域加长,或同时加长和加宽时,相应增加一根捆扎钢带使电堆内部活性区域的平均应力标准差分别减小了8.6%和8.7%,表明适当增加捆扎钢带的数量可以提高电堆内部接触压力分布的均匀性.此外,钢带位置优化结果显示,电堆外侧钢带越靠近端板侧面时,电堆内部活性区域的应力分布越均匀. 展开更多
关键词 质子交换膜燃料电池 钢带捆扎 电堆放大 膜电极 压力分布一致性
下载PDF
PEMFC膜电极组件(MEA)制备方法的评述 被引量:11
18
作者 马建新 衣宝廉 +2 位作者 俞红梅 侯中军 张华民 《化学进展》 SCIE CAS CSCD 2004年第5期804-812,共9页
膜电极组件 (MEA)是质子交换膜燃料电池的核心部件。本文在简述MEA结构的基础上 ,根据MEA制备过程中催化层支撑体不同 ,将目前已有的多种MEA制备方法分为两类制备模式 :以GDL为支撑体和以PEM为支撑体的制备模式。文中对这些制备方法的... 膜电极组件 (MEA)是质子交换膜燃料电池的核心部件。本文在简述MEA结构的基础上 ,根据MEA制备过程中催化层支撑体不同 ,将目前已有的多种MEA制备方法分为两类制备模式 :以GDL为支撑体和以PEM为支撑体的制备模式。文中对这些制备方法的特点进行了详细评述 ,对MEA制备方法的发展趋势进行了展望 。 展开更多
关键词 质子交换膜燃料电池 膜电极组件 制备方法 结构 PEM
下载PDF
工作条件对钛网基MEA性能的影响 被引量:3
19
作者 汪兴兴 倪红军 +2 位作者 朱昱 万晓峰 马骏 《电源技术》 CAS CSCD 北大核心 2012年第7期988-990,1010,共4页
为研究工作条件对钛网基MEA性能的影响,以钛网作为电极支撑体材料,以Nafion117作为质子交换膜,以PtRu/XC-72R作为阳极催化剂,以Pt/XC-72R作为阴极催化剂,采用滴涂的方法制备了钛网基MEA阳极和阴极。采用成型温度为135℃,成型压力为5 MPa... 为研究工作条件对钛网基MEA性能的影响,以钛网作为电极支撑体材料,以Nafion117作为质子交换膜,以PtRu/XC-72R作为阳极催化剂,以Pt/XC-72R作为阴极催化剂,采用滴涂的方法制备了钛网基MEA阳极和阴极。采用成型温度为135℃,成型压力为5 MPa,保压时间为180 s的条件热压制备钛网基MEA并在工作条件进行测试,研究结果表明:(1)无论是在室温25℃条件下还是在高温60℃条件下,阴极氧化剂采用0.1 MPa的100 mL/min氧气的功率密度峰值均高于采用自呼吸空气的功率密度峰值;(2)无论是在室温25℃条件下,还是在高温60℃条件下,无论阴极氧化剂为自呼吸空气,还是0.1 MPa的100 mL/min氧气,电解液中的甲醇浓度对钛网基MEA的影响呈现了一致性,即当甲醇浓度从0.5 mol/L变大到1.0 mol/L时,钛网基MEA的功率密度峰值是增大的,当甲醇浓度从1.0 mol/L经过1.5mol/L增大到2.0 mol/L时,钛网基MEA的功率密度峰值逐渐减小;(3)当工作温度从25℃逐渐增大到80℃,钛网基MEA的功率密度峰值从5.19 mW/cm2逐渐增大到17.10 mW/cm2。 展开更多
关键词 直接甲醇燃料电池 膜电极组件 工作环境条件 钛网 电池性能
下载PDF
车用质子交换膜燃料电池低铂化展望及应用
20
作者 蔡鑫 林瑞 《汽车工程学报》 2024年第4期553-565,共13页
质子交换膜燃料电池作为氢能产业应用的核心产品,具有能量转换效率高、零排放、无污染等特点,是车用领域的重要动力来源之一。然而,高昂的成本限制了车用质子交换膜燃料电池的大规模应用及推广。低铂化膜电极技术的开发是提高其价格竞... 质子交换膜燃料电池作为氢能产业应用的核心产品,具有能量转换效率高、零排放、无污染等特点,是车用领域的重要动力来源之一。然而,高昂的成本限制了车用质子交换膜燃料电池的大规模应用及推广。低铂化膜电极技术的开发是提高其价格竞争力的重要手段,但低铂化过程中面临的严重传质和寿命问题急需解决。总结了低铂化膜电极技术的研究进展及现有技术的不足,并展望了未来的发展趋势,可为车用质子交换膜燃料电池的低铂化膜电极技术开发提供参考。 展开更多
关键词 质子交换膜燃料电池 膜电极 低铂化 传质损失 耐久性
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部