The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-...The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-based barrier materials.However,the common assumption of perfectly flushing conditions at the specimen boundaries could induce errors in analyses of the diffusion coefficients and membrane efficiencies.In this study,an innovative pseudo three-dimensional(3D)analytical method was proposed to evaluate solute distribution along the boundary surfaces of the soil-porous disks system,considering the non-perfectly flushing conditions.The results were consistent with numerical models under two scenarios considering different inflow/outflow positions.The proposed model has been demonstrated to be an accurate and reliable method to estimate solute distributions along the bound-aries.The calculated membrane efficiency coefficient and diffusion coefficient based on the proposed analytical method are more accurate,resulting in up to 50%less relative error than the traditional approach that adopts the arithmetic mean value of the influent and effluent concentrations.The retar-dation factor of the clay specimen also can be calculated with a revised cumulative mass approach.Finally,the simulated transient solute transport matched with experimental data from a multi-stage through-diffusion and membrane behavior test,validating the accuracy of the proposed method.展开更多
Bentonite has been proven to be effective in enhancing the membrane property of clay, by which landfill liners can have better barrier performance with regard to the migration of contaminants. In this work, 5% sodium ...Bentonite has been proven to be effective in enhancing the membrane property of clay, by which landfill liners can have better barrier performance with regard to the migration of contaminants. In this work, 5% sodium bentonite amended with locally available Fukakusa clay was utilized to evaluate the membrane behavior toward different kinds of ions: K, Na and Ca. The chemico-osmotic efficiency coefficient, co, was obtained in electrolyte solution with different concentrations of 0.5, 1, 5, 10, and 50 mmol/L. According to the results, solute type and ion valence have a significant effect on membrane behaviors. Additionally, co continually decreased as the Na and Ca concentrations increased, which is consistent with the Gouy-Chapman theory. The membrane behavior toward Na was similar to that toward K, according to the chemico-osmotic efficiency coefficient co. In the case of the divalent ion Ca, the membrane behavior was lower compared to monovalent ions Na and K at the same concentration. The mechanisms of the membrane performance change were discussed with the assistance of XRD patterns, free-swelling results and SEM images.展开更多
Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused ...Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.展开更多
This investigation describes the one step preparation of potassium carbonate by electrolysis of potas-sium chloride solution in electrolyzers with various Nation membranes.Potassium bicarbonate solution wasfed to the ...This investigation describes the one step preparation of potassium carbonate by electrolysis of potas-sium chloride solution in electrolyzers with various Nation membranes.Potassium bicarbonate solution wasfed to the cathode compartment,where it was converted into carbonate by reaction with the hydroxideformed at cathode.Because of the low OH^- concentration in the cathode compartment,the back migrationof OH^- through the membrane was almost negligible,resulting in a higher current efficiency,say 90% or more.In this study,electroconductivity,mass transfer,current efficiency and cell voltage were measured.Thefeasibility of the process was discussed and the optimal conditions examined.展开更多
Coagulation plays an important role in alleviating membrane fouling, and a noticeable problem is the development of microorganisms after long-time operation, which gradually secrete extracellular polymeric substances...Coagulation plays an important role in alleviating membrane fouling, and a noticeable problem is the development of microorganisms after long-time operation, which gradually secrete extracellular polymeric substances(EPS). To date, few studies have paid attention to the behavior of microorganisms in drinking water treatment with ultrafiltration(UF)membranes. Herein, the membrane biofouling was investigated with different aluminum and iron salts. We found that Al_2(SO_4)_3·18 H_2O performed better in reducing membrane fouling due to the slower growth rate of microorganisms. In comparison to Al_2(SO_4)_3·18H_2O,more EPS were induced with Fe_2(SO_4)_3·x18H_2O, both in the membrane tank and the sludge on the cake layer. We also found that bacteria were the major microorganisms, of which the concentration was much higher than those of fungi and archaea. Further analyses showed that Proteobacteria was dominant in bacterial communities, which caused severe membrane fouling by forming a biofilm, especially for Fe_2(SO_4)_3·x18H_2O. Additionally, the abundances of Bacteroidetes and Verrucomicrobia were relatively higher in the presence of Al_2(SO_4)_3·18 H_2O,resulting in less severe biofouling by effectively degrading the protein and polysaccharide in EPS. As a result, in terms of microorganism behaviors, Al-based salts should be given preference as coagulants during actual operations.展开更多
In this work, the effects of annealing conditions on the microstructure of polypropylene(PP) precursor films and further on the porous structure and permeability of stretched membranes were investigated. Combination...In this work, the effects of annealing conditions on the microstructure of polypropylene(PP) precursor films and further on the porous structure and permeability of stretched membranes were investigated. Combinations of WAXD, FTIR, DSC and DMA results clearly showed the crystalline orientation and crystallinity of the precursor film increased with annealing temperature, while the molecular chain entanglements in the amorphous phase decreased. Changes in the deformation behavior suggested more lamellar separation occurred for the films annealed at higher temperatures. Surface morphologies of the membranes examined by SEM revealed more pore number and uniform porous structure as the annealing temperature increased. In accordance with the SEM results, the permeability of the membranes increased with annealing temperature. On the other hand, it was found that 10 min was almost enough for the annealing process to obtain the microporous membranes with an optimal permeability.展开更多
基金The financial support received from the Ministry of Science and Technology of the People’s Republic of China(Grant No.2019YFC1806002)National Natural Science Foundation of China(Grant Nos.42107174,42077241)is gratefully acknowledged.
文摘The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-based barrier materials.However,the common assumption of perfectly flushing conditions at the specimen boundaries could induce errors in analyses of the diffusion coefficients and membrane efficiencies.In this study,an innovative pseudo three-dimensional(3D)analytical method was proposed to evaluate solute distribution along the boundary surfaces of the soil-porous disks system,considering the non-perfectly flushing conditions.The results were consistent with numerical models under two scenarios considering different inflow/outflow positions.The proposed model has been demonstrated to be an accurate and reliable method to estimate solute distributions along the bound-aries.The calculated membrane efficiency coefficient and diffusion coefficient based on the proposed analytical method are more accurate,resulting in up to 50%less relative error than the traditional approach that adopts the arithmetic mean value of the influent and effluent concentrations.The retar-dation factor of the clay specimen also can be calculated with a revised cumulative mass approach.Finally,the simulated transient solute transport matched with experimental data from a multi-stage through-diffusion and membrane behavior test,validating the accuracy of the proposed method.
基金Projects(51179168,51308310)supported by National Natural Science Foundation of ChinaProject(LQ13E080007)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars(Chinese State Education Ministry)
文摘Bentonite has been proven to be effective in enhancing the membrane property of clay, by which landfill liners can have better barrier performance with regard to the migration of contaminants. In this work, 5% sodium bentonite amended with locally available Fukakusa clay was utilized to evaluate the membrane behavior toward different kinds of ions: K, Na and Ca. The chemico-osmotic efficiency coefficient, co, was obtained in electrolyte solution with different concentrations of 0.5, 1, 5, 10, and 50 mmol/L. According to the results, solute type and ion valence have a significant effect on membrane behaviors. Additionally, co continually decreased as the Na and Ca concentrations increased, which is consistent with the Gouy-Chapman theory. The membrane behavior toward Na was similar to that toward K, according to the chemico-osmotic efficiency coefficient co. In the case of the divalent ion Ca, the membrane behavior was lower compared to monovalent ions Na and K at the same concentration. The mechanisms of the membrane performance change were discussed with the assistance of XRD patterns, free-swelling results and SEM images.
基金Supported by the National Natural Science Foundation of China(2160060639)the Natural Science Foundation of Jiangsu Province(BK20160984)the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry(ZX15511310002)
文摘Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.
文摘This investigation describes the one step preparation of potassium carbonate by electrolysis of potas-sium chloride solution in electrolyzers with various Nation membranes.Potassium bicarbonate solution wasfed to the cathode compartment,where it was converted into carbonate by reaction with the hydroxideformed at cathode.Because of the low OH^- concentration in the cathode compartment,the back migrationof OH^- through the membrane was almost negligible,resulting in a higher current efficiency,say 90% or more.In this study,electroconductivity,mass transfer,current efficiency and cell voltage were measured.Thefeasibility of the process was discussed and the optimal conditions examined.
基金supported by a major program granted by the National Natural Science Foundation of China(No.51290282)
文摘Coagulation plays an important role in alleviating membrane fouling, and a noticeable problem is the development of microorganisms after long-time operation, which gradually secrete extracellular polymeric substances(EPS). To date, few studies have paid attention to the behavior of microorganisms in drinking water treatment with ultrafiltration(UF)membranes. Herein, the membrane biofouling was investigated with different aluminum and iron salts. We found that Al_2(SO_4)_3·18 H_2O performed better in reducing membrane fouling due to the slower growth rate of microorganisms. In comparison to Al_2(SO_4)_3·18H_2O,more EPS were induced with Fe_2(SO_4)_3·x18H_2O, both in the membrane tank and the sludge on the cake layer. We also found that bacteria were the major microorganisms, of which the concentration was much higher than those of fungi and archaea. Further analyses showed that Proteobacteria was dominant in bacterial communities, which caused severe membrane fouling by forming a biofilm, especially for Fe_2(SO_4)_3·x18H_2O. Additionally, the abundances of Bacteroidetes and Verrucomicrobia were relatively higher in the presence of Al_2(SO_4)_3·18 H_2O,resulting in less severe biofouling by effectively degrading the protein and polysaccharide in EPS. As a result, in terms of microorganism behaviors, Al-based salts should be given preference as coagulants during actual operations.
基金financially supported by the National Natural Science Foundation of China(No.51273132)Chinese Scholarship Council(CSC)
文摘In this work, the effects of annealing conditions on the microstructure of polypropylene(PP) precursor films and further on the porous structure and permeability of stretched membranes were investigated. Combinations of WAXD, FTIR, DSC and DMA results clearly showed the crystalline orientation and crystallinity of the precursor film increased with annealing temperature, while the molecular chain entanglements in the amorphous phase decreased. Changes in the deformation behavior suggested more lamellar separation occurred for the films annealed at higher temperatures. Surface morphologies of the membranes examined by SEM revealed more pore number and uniform porous structure as the annealing temperature increased. In accordance with the SEM results, the permeability of the membranes increased with annealing temperature. On the other hand, it was found that 10 min was almost enough for the annealing process to obtain the microporous membranes with an optimal permeability.