A pilot scale(10 m 3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was exc...A pilot scale(10 m 3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was excellent, i.e. effluent COD less than 25 mg/L, BOD 5 under 5 mg/L, turbidity lower than 0 65 NTU, and colour less than 30 DT, and met with the reuse water standard of China. The removal rates of COD, BOD 5, colour, and turbidity were 92 4%, 98 4%, 74% and 98 9%, respectively. Constant flux operation mode was carried out in this study, and backwash was effective for reducing membrane fouling and maintaining constant flux. Membrane fouling had heavy impact on energy consumption. More attention should be paid on pipe selection and design for the sidestream MBR system, too.展开更多
Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) o...Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) operated in parallel under the same feed, equipped with the same electronic control backwashing device. One was used as the control SMBR (CSMBR) while the other was dosed with powdered activated carbon (PAC) (PAC-amended SMBR, PSMBR). The backwashing interval was 5 min. One suction period was about 90 min by adjusting preestablished backwashing vacuum and pump frequency. The average flux of CSMBR during a steady periodic state of 24 d (576 h) was 5.87 L/h with average hydraulic residence time (HRT) of 5.97 h and that of PSMBR during a steady periodic state of 30 d (720 h) was 5.85 L/h with average HRT of 5.99 h. The average total chemical oxygen demand (COD) removal efficiency of CSMBR was 89.29% with average organic loading rate (OLR) at 4.16 kg COD/(m^3.d) while that of PSMBR was 89.79% with average OLR at 5.50 kg COD/(m^3.d). COD concentration in the effluent of both SMBRs achieved the second level of the general wastewater effluent standard GB8978-1996 for the raw medicine material industry (300 mg/L). Hence, SMBR with electronic control backwashing was a viable process for medium-strength Chinese traditional medicine wastewater treatment. Moreover, the increasing rates of preestablished backwashing vacuum, pump frequency, and vacuum and flux loss caused by mixed liquor in PSMBR all lagged compared to those in CSMBR; thus the actual operating time of the PSMBR system without membrane cleaning was extended by up to 1.25 times in contrast with the CSMBR system, and the average total COD removal efficiency of PSMBR was enhanced with higher average OLR.展开更多
Simultaneous nitrification and denitrification (SND) effect and phosphor removal were investigated in a one-staged aerobic submerged membrane bioreactor on pilot-scale with mixed liquor suspended solids (MLSS) 19-...Simultaneous nitrification and denitrification (SND) effect and phosphor removal were investigated in a one-staged aerobic submerged membrane bioreactor on pilot-scale with mixed liquor suspended solids (MLSS) 19--20 g/L. The effects of DO concentration, sludge floc size distribution on SND were studied. Test results suggested that SND was successfully performed in the membrane bioreactor (MBR) and about 70% total nitrogen removal efficiency was achieved when DO concentration was set to 0.2-- 0.3 mg/L. The main mechanisms governing SND were the suitable sludge floc size and the low DO concentration which was caused by low oxygen transfer rate with such a high MLSS concentration in the MBR. In the meantime, phosphor removal was also studied with polymer ferric sulfate (PFS) addition and 14 mg/L dosage of PFS was proper for the MBR to remove phosphor. PFS addition also benefited the MBR operation owing to its reduction of extracellular polymer substances (EPS) of mixed liquor.展开更多
Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and field em...Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and field emission scanning electron microscope (FE- SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.展开更多
Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limit...Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limited addition of alkaline reagents and volumetric loading rates of inorganic-N of 0.19-0.40 kg inorganic-N/(m^3·d) helped achieve the desired nitrification and denitrification. Furthermore, the effects of pH and dissolved oxygen (DO) on inorganic-N removal were examined. Under the condition of MLSS at 1.56-2.35 g/L, BODs/ammonia nitrogen (NH4+-N) at 1.0, pH at 7.0-7.5, and DO at 1.0-2.0 mg/L, the removal efficiencies of NH4^+-N and inorganic-N were 91.5% and 70.0%, respectively, in the AEC-MBR. The cost of addition of alkaline reagent was approximately 0.5-1.5 RMB yuan/m^3, and the energy consumption was approximately 0.72 kWh/m^3 at the flux of 8 L/(m^2-h).展开更多
A lab scale membrane bioreactor system was built to investigate the removal of Di-2-Ethyl Hexyl Phthalates (DEHP) in wastewater under variation of three runs: two hydraulic retention time (HRT) 24 and 36 hours in addi...A lab scale membrane bioreactor system was built to investigate the removal of Di-2-Ethyl Hexyl Phthalates (DEHP) in wastewater under variation of three runs: two hydraulic retention time (HRT) 24 and 36 hours in addition to two biomass: concentrated and light sludge. Solid phase extraction (SPE) followed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) was applied to quantitatively identify DEHP in wastewater samples. Membrane bioreactor was built and operated to investigate DEHP removal. Higher HRT removed DEHP more efficiently than lower HRT. The concentrated MLSS could achieve higher removal efficiency than the lighter MLSS at the same HRT value. The performance of MBR in removing DEHP, TOC and COD from wastewater with a maximum removal efficiency were 29%, 85%, and 98%, respectively. Mass balance of DEHP in the system indicated that a majority was removed by adsorption process rather than filtration or microbiological process.展开更多
By a membrane bioreactor with a settle tank in long-term operation and batch experiments, the effects of floes, soluble microorganism products (SMPs) and metal ions in activated sludge liquor on membrane fouling wer...By a membrane bioreactor with a settle tank in long-term operation and batch experiments, the effects of floes, soluble microorganism products (SMPs) and metal ions in activated sludge liquor on membrane fouling were investigated. The results showed that foulants absorbed each other and formed a fouling layer as a "second membrane" influencing the permeability of the membrane. The "gel layer" caused by SMPs and "cake layer" by floes showed great differences in morphology by analysis of scanning electron microscope and atomic force microscope. The "gel layer" was more compact and of poor permeability. When the membrane flux was 40 L/(m^2·h), the rate of membrane fouling caused by supernatant (0.011 MPa/h) was greater than that by sludgc liquor (0.0063 MPa/h). SMPs played very important roles on membrane fouling. In the bulking sludge, with SMPs increasing, the rate of membrane fouling (0.0132 MPa/h) was faster. While after flocculation of the SMPs, the rate of fouling decreased to 0.0034 M Pa/h. Floes could keep holes in their overlaps. They could alleviate membrane fouling by preventing the SMPs directly attaching on membrane surface.展开更多
In order to understand the effect of low temperature on the formation process of aerobic granules and contaminants removal characteristics,the aerobic granules-membrane bioreactor (AGS-MBR) has been started up and ope...In order to understand the effect of low temperature on the formation process of aerobic granules and contaminants removal characteristics,the aerobic granules-membrane bioreactor (AGS-MBR) has been started up and operated at low temperature using the carbon resource of sodium acetate. Aerobic granules cultivated in AGS-MBR possess smooth surface and compact structure in morphology as well as better settling property and higher biomass after 38 days. The average parameters of aerobic granules are: diameter 3. 1 mm,wet density 1. 041 g/mL,sludge volume index 42. 35 mL/g and settling velocity 20. 6 - 45. 2 cm/min. During the start-up of AGS-MBR,the respectively average contaminants removal efficiencies at low temperature are 91. 9% for chemical oxygen demand (COD) ,89. 2% for NH4 + -N and 86. 3% for PO43- -P,and the overgrowth of filamentous bacteria has been well controlled. In addition,the hollow fiber microfiltration (MF) membrane fouling is light and the regime membrane layer is capable of enhancing membrane filtration as well as the average growth of trans-membrane pressure (TMP) is 1. 07 kPa/d. Compared with the conventional cultivation of aerobic granules,the sludge granulation time significantly decreases from 73 days to 38 days by the application of microfiltration membrane at low temperature.展开更多
Membrane bioreactor (MBR) used in water and waste water treatment is a developing technique for water pollution control and water reuse. This paper described a membrane bioreactor for treatment of waste water in a pet...Membrane bioreactor (MBR) used in water and waste water treatment is a developing technique for water pollution control and water reuse. This paper described a membrane bioreactor for treatment of waste water in a petrochemical complex. The experimental MBR was a lab scale one composed of an activated sludge bioreactor unit and an ultrafiltration membrane unit. The relationship of COD removal with MLSS and HRT in this MBR was studied. The effects of crossflow velocity, backwash interval and volume of flush liquid on the flux were discussed. The results showed that average removal of COD, oil, SS and turbidity in petrochemical waste water by the MBR was 91%, 86%, 92% and 99%, respectively. The average removal of NH 3 N and total phosphorous was 85% and 82% respectively. A coefficient of COD removal, k , was 0017—0080 L/(mg.d). The membrane flux maintained higher than 60 L/hm 2 bar for 34 days without chemical cleaning when the velocity of crossflow was 35—39 m/s and the backwash interval was 30 minutes and backwash duration at 20 seconds. The results indicated that it is feasible for MBR technology to be used in petrochemical waste water treatment. The treated water could be considered as a source of to make up water for industrial cooling system or to be reused for other purposes.展开更多
Nonwoven was selected as filtration materials in submerged membrane bioreactor( MBR) for domestic wastewater reclamation. For its hydrophobic membrane surface,diatomite was precoated on nonwoven to improve membrane hy...Nonwoven was selected as filtration materials in submerged membrane bioreactor( MBR) for domestic wastewater reclamation. For its hydrophobic membrane surface,diatomite was precoated on nonwoven to improve membrane hydrophilicity. In the precoating stage,diatomite dynamic membrane could be formed on10 μm polyethylene nonwoven surface efficiently and effluent turbidity could be below 5 nephelometric turbidity units( NTU).The MBR system was operated steadily under gravity flow and scanning electron microscope( SEM) analysis showed that nonwoven membrane was only partially fouled at the membrane flux of 5 L/( m2·h). Average removal efficiencies of chemical oxygen demand( COD) and NH +4-N were above 86 % and 50 %,respectively. The effluent turbidity and chromaticity were below 5 NTU and 25°,respectively. Those results could meet the requirements for wastewater reuse.展开更多
Membrane fouling is the main problem of membrane bioreactors (MBR), which seriously influ- ences its wastewater treatment effect and running. The characteristics of microbiology and hydrodynamics concerning membrane f...Membrane fouling is the main problem of membrane bioreactors (MBR), which seriously influ- ences its wastewater treatment effect and running. The characteristics of microbiology and hydrodynamics concerning membrane fouling were investigated and the measure was put forward for optimum operation of MBR. The measure is that 1) the parameters of activated sludge concentration (X) and membrane flux should be lower than the critical values of X and membrane flux respectively, and 2) the activated sludge should be discharged periodically. The experimental results show that the combination backwashing of gas and perme- ated effluent is better than single gas backwashing or single permeated effluent backwashing. This technique can remove the cake layer deposited on the membrane surface, decrease the membrane fouling, and recover the membrane flux effectively. So it is effective for prevention of membrane fouling.展开更多
An anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dyeing wastewater from a woolen mill. COD and color of the wastewater were 54—473 mg/L and 40—400 dilution time (DT) respectively. The ratio ...An anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dyeing wastewater from a woolen mill. COD and color of the wastewater were 54—473 mg/L and 40—400 dilution time (DT) respectively. The ratio of BOD 5/COD was less than 0.13. By the A/O MBR process, the average removal of COD, BOD 5, color and turbidity was 82%, 96%, 71% and 99%, respectively. The average COD, BOD 5, color and turbidity of effluent was 37 mg/L, 0.8 mg/L, 40 DT and 0.44 NUT respectively. The effluent COD met the local standard of reuse water in Beijing, China. The average COD volume load of the anaerobic biological tank was 0.0483 kgCOD/(m 3·d) and that of the aeration tank of the MBR was 0.3589 kgCOD/(m 3·d). The sludge load of the MBR was 0.19 kgCOD/(kg·MLSS·d) on average and the maximum of that was 0.4 kgCOD/(kg·MLSS·d). The flux of the A/O membrane bioreactor could be remained at larger than 50 L/(h·m 2·0.1MPa). The results indicated that A/O membrane bioreactor has technical feasibility for treatment of woolen mill wastewater.展开更多
To investigate the effects of ozonation on minimizing the excess sludge and enhancing the nitrogen removal in an effluent, batch and continuous experiments in two MBRs with and without sludge ozonation ( namely combi...To investigate the effects of ozonation on minimizing the excess sludge and enhancing the nitrogen removal in an effluent, batch and continuous experiments in two MBRs with and without sludge ozonation ( namely combined and reference run) were carried out. Through ozonation at a dose of 0. 16 mg O3/mg MLVSS, 53.1% of the treated MLVSS was solubilized, and soluble SCOD/TN ratio of ozonized sludge (OS) was about 8. 6 due to the release of cellular nitrogen-contained materials and SCOD loss by ozone mineralization. In addition, the results of batch nitrification and denitrification tests with OS supernatant indicated that solubilized sludge could act as a reducing power for denitrification and a nitrogen source for nitrification. 40-day operation of-two MBR systems demonstrated that the recirculation of OS into a bioreaetor enabled the combined system have two advantages over the control one. The observed sludge yield (Yobs) was decreased from 0. 13 to 0. 06g MLSS/g COD, while the nitrogen removal was increased from 64. 6% to 72. 3%. And sludge ozonation elevated the inorganic fraction of MLSS, but did not impact sludge activities.展开更多
A kind of hybrid membrane process, which integrated powdered activated carbon (PAC) with membrane bioreactor (MBR), was designed for bench scale experiment for micro-polluted surface water treatment. Molecular weight ...A kind of hybrid membrane process, which integrated powdered activated carbon (PAC) with membrane bioreactor (MBR), was designed for bench scale experiment for micro-polluted surface water treatment. Molecular weight analysis was used to evaluate the efficiency of each unit process and the integration of them. The result of analysis indicated that organic molecules in the treated water from PAC-MBR process were concentrated on the section of below 1000, while PAC adsorption could enhance the removal efficiency of this section due to the high percent of biodegradation recalcitrant organic matter with low molecular weight. It was demonstrated that PAC adsorption and biological treatment promoted each other in PAC-MBR process, with a removal efficiency of 70% for COD Mn and UV 254, 100% for UV 410 and 92% for ammonia nitrogen in its stable stage.展开更多
文摘A pilot scale(10 m 3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was excellent, i.e. effluent COD less than 25 mg/L, BOD 5 under 5 mg/L, turbidity lower than 0 65 NTU, and colour less than 30 DT, and met with the reuse water standard of China. The removal rates of COD, BOD 5, colour, and turbidity were 92 4%, 98 4%, 74% and 98 9%, respectively. Constant flux operation mode was carried out in this study, and backwash was effective for reducing membrane fouling and maintaining constant flux. Membrane fouling had heavy impact on energy consumption. More attention should be paid on pipe selection and design for the sidestream MBR system, too.
基金Project supported by the Hi-Tech Research and Development Program(863)of China(No. 2002AA601310).
文摘Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) operated in parallel under the same feed, equipped with the same electronic control backwashing device. One was used as the control SMBR (CSMBR) while the other was dosed with powdered activated carbon (PAC) (PAC-amended SMBR, PSMBR). The backwashing interval was 5 min. One suction period was about 90 min by adjusting preestablished backwashing vacuum and pump frequency. The average flux of CSMBR during a steady periodic state of 24 d (576 h) was 5.87 L/h with average hydraulic residence time (HRT) of 5.97 h and that of PSMBR during a steady periodic state of 30 d (720 h) was 5.85 L/h with average HRT of 5.99 h. The average total chemical oxygen demand (COD) removal efficiency of CSMBR was 89.29% with average organic loading rate (OLR) at 4.16 kg COD/(m^3.d) while that of PSMBR was 89.79% with average OLR at 5.50 kg COD/(m^3.d). COD concentration in the effluent of both SMBRs achieved the second level of the general wastewater effluent standard GB8978-1996 for the raw medicine material industry (300 mg/L). Hence, SMBR with electronic control backwashing was a viable process for medium-strength Chinese traditional medicine wastewater treatment. Moreover, the increasing rates of preestablished backwashing vacuum, pump frequency, and vacuum and flux loss caused by mixed liquor in PSMBR all lagged compared to those in CSMBR; thus the actual operating time of the PSMBR system without membrane cleaning was extended by up to 1.25 times in contrast with the CSMBR system, and the average total COD removal efficiency of PSMBR was enhanced with higher average OLR.
基金The Hi-Tech Research and Development Program (863) of China (No. 2002AA601220)
文摘Simultaneous nitrification and denitrification (SND) effect and phosphor removal were investigated in a one-staged aerobic submerged membrane bioreactor on pilot-scale with mixed liquor suspended solids (MLSS) 19--20 g/L. The effects of DO concentration, sludge floc size distribution on SND were studied. Test results suggested that SND was successfully performed in the membrane bioreactor (MBR) and about 70% total nitrogen removal efficiency was achieved when DO concentration was set to 0.2-- 0.3 mg/L. The main mechanisms governing SND were the suitable sludge floc size and the low DO concentration which was caused by low oxygen transfer rate with such a high MLSS concentration in the MBR. In the meantime, phosphor removal was also studied with polymer ferric sulfate (PFS) addition and 14 mg/L dosage of PFS was proper for the MBR to remove phosphor. PFS addition also benefited the MBR operation owing to its reduction of extracellular polymer substances (EPS) of mixed liquor.
基金Project supported by the High-Tech Research and Development Program (863)of China(No.2002AA601230)the Science-Research Program of Jiaxing City,China(No.2005AY3013).
文摘Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and field emission scanning electron microscope (FE- SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2002AA601220)
文摘Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limited addition of alkaline reagents and volumetric loading rates of inorganic-N of 0.19-0.40 kg inorganic-N/(m^3·d) helped achieve the desired nitrification and denitrification. Furthermore, the effects of pH and dissolved oxygen (DO) on inorganic-N removal were examined. Under the condition of MLSS at 1.56-2.35 g/L, BODs/ammonia nitrogen (NH4+-N) at 1.0, pH at 7.0-7.5, and DO at 1.0-2.0 mg/L, the removal efficiencies of NH4^+-N and inorganic-N were 91.5% and 70.0%, respectively, in the AEC-MBR. The cost of addition of alkaline reagent was approximately 0.5-1.5 RMB yuan/m^3, and the energy consumption was approximately 0.72 kWh/m^3 at the flux of 8 L/(m^2-h).
文摘A lab scale membrane bioreactor system was built to investigate the removal of Di-2-Ethyl Hexyl Phthalates (DEHP) in wastewater under variation of three runs: two hydraulic retention time (HRT) 24 and 36 hours in addition to two biomass: concentrated and light sludge. Solid phase extraction (SPE) followed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) was applied to quantitatively identify DEHP in wastewater samples. Membrane bioreactor was built and operated to investigate DEHP removal. Higher HRT removed DEHP more efficiently than lower HRT. The concentrated MLSS could achieve higher removal efficiency than the lighter MLSS at the same HRT value. The performance of MBR in removing DEHP, TOC and COD from wastewater with a maximum removal efficiency were 29%, 85%, and 98%, respectively. Mass balance of DEHP in the system indicated that a majority was removed by adsorption process rather than filtration or microbiological process.
基金The National Basic Research Program (973) of China (No. 2004CB418505) and the Teaching and Research Award Program forOutstanding Young Teachers in Higher Education Institutions of MOE, China
文摘By a membrane bioreactor with a settle tank in long-term operation and batch experiments, the effects of floes, soluble microorganism products (SMPs) and metal ions in activated sludge liquor on membrane fouling were investigated. The results showed that foulants absorbed each other and formed a fouling layer as a "second membrane" influencing the permeability of the membrane. The "gel layer" caused by SMPs and "cake layer" by floes showed great differences in morphology by analysis of scanning electron microscope and atomic force microscope. The "gel layer" was more compact and of poor permeability. When the membrane flux was 40 L/(m^2·h), the rate of membrane fouling caused by supernatant (0.011 MPa/h) was greater than that by sludgc liquor (0.0063 MPa/h). SMPs played very important roles on membrane fouling. In the bulking sludge, with SMPs increasing, the rate of membrane fouling (0.0132 MPa/h) was faster. While after flocculation of the SMPs, the rate of fouling decreased to 0.0034 M Pa/h. Floes could keep holes in their overlaps. They could alleviate membrane fouling by preventing the SMPs directly attaching on membrane surface.
基金Sponsored by the National High Technology Research and Development Program of China (863 Program,Grant No.2008AA06Z304)State Water Pollution Control and Harnessing of the Major Projects (Grant No.2009ZX07424-005)International Cooperation Program (Grant No.2010DFA92460)
文摘In order to understand the effect of low temperature on the formation process of aerobic granules and contaminants removal characteristics,the aerobic granules-membrane bioreactor (AGS-MBR) has been started up and operated at low temperature using the carbon resource of sodium acetate. Aerobic granules cultivated in AGS-MBR possess smooth surface and compact structure in morphology as well as better settling property and higher biomass after 38 days. The average parameters of aerobic granules are: diameter 3. 1 mm,wet density 1. 041 g/mL,sludge volume index 42. 35 mL/g and settling velocity 20. 6 - 45. 2 cm/min. During the start-up of AGS-MBR,the respectively average contaminants removal efficiencies at low temperature are 91. 9% for chemical oxygen demand (COD) ,89. 2% for NH4 + -N and 86. 3% for PO43- -P,and the overgrowth of filamentous bacteria has been well controlled. In addition,the hollow fiber microfiltration (MF) membrane fouling is light and the regime membrane layer is capable of enhancing membrane filtration as well as the average growth of trans-membrane pressure (TMP) is 1. 07 kPa/d. Compared with the conventional cultivation of aerobic granules,the sludge granulation time significantly decreases from 73 days to 38 days by the application of microfiltration membrane at low temperature.
文摘Membrane bioreactor (MBR) used in water and waste water treatment is a developing technique for water pollution control and water reuse. This paper described a membrane bioreactor for treatment of waste water in a petrochemical complex. The experimental MBR was a lab scale one composed of an activated sludge bioreactor unit and an ultrafiltration membrane unit. The relationship of COD removal with MLSS and HRT in this MBR was studied. The effects of crossflow velocity, backwash interval and volume of flush liquid on the flux were discussed. The results showed that average removal of COD, oil, SS and turbidity in petrochemical waste water by the MBR was 91%, 86%, 92% and 99%, respectively. The average removal of NH 3 N and total phosphorous was 85% and 82% respectively. A coefficient of COD removal, k , was 0017—0080 L/(mg.d). The membrane flux maintained higher than 60 L/hm 2 bar for 34 days without chemical cleaning when the velocity of crossflow was 35—39 m/s and the backwash interval was 30 minutes and backwash duration at 20 seconds. The results indicated that it is feasible for MBR technology to be used in petrochemical waste water treatment. The treated water could be considered as a source of to make up water for industrial cooling system or to be reused for other purposes.
基金China State Construction Innovation Project(No.CSCEC-2012-Z-14)Shanghai Education Research and Innovation Project,China(Nos.11ZZ176,12YZ153,and ZZGJD12052)
文摘Nonwoven was selected as filtration materials in submerged membrane bioreactor( MBR) for domestic wastewater reclamation. For its hydrophobic membrane surface,diatomite was precoated on nonwoven to improve membrane hydrophilicity. In the precoating stage,diatomite dynamic membrane could be formed on10 μm polyethylene nonwoven surface efficiently and effluent turbidity could be below 5 nephelometric turbidity units( NTU).The MBR system was operated steadily under gravity flow and scanning electron microscope( SEM) analysis showed that nonwoven membrane was only partially fouled at the membrane flux of 5 L/( m2·h). Average removal efficiencies of chemical oxygen demand( COD) and NH +4-N were above 86 % and 50 %,respectively. The effluent turbidity and chromaticity were below 5 NTU and 25°,respectively. Those results could meet the requirements for wastewater reuse.
文摘Membrane fouling is the main problem of membrane bioreactors (MBR), which seriously influ- ences its wastewater treatment effect and running. The characteristics of microbiology and hydrodynamics concerning membrane fouling were investigated and the measure was put forward for optimum operation of MBR. The measure is that 1) the parameters of activated sludge concentration (X) and membrane flux should be lower than the critical values of X and membrane flux respectively, and 2) the activated sludge should be discharged periodically. The experimental results show that the combination backwashing of gas and perme- ated effluent is better than single gas backwashing or single permeated effluent backwashing. This technique can remove the cake layer deposited on the membrane surface, decrease the membrane fouling, and recover the membrane flux effectively. So it is effective for prevention of membrane fouling.
文摘An anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dyeing wastewater from a woolen mill. COD and color of the wastewater were 54—473 mg/L and 40—400 dilution time (DT) respectively. The ratio of BOD 5/COD was less than 0.13. By the A/O MBR process, the average removal of COD, BOD 5, color and turbidity was 82%, 96%, 71% and 99%, respectively. The average COD, BOD 5, color and turbidity of effluent was 37 mg/L, 0.8 mg/L, 40 DT and 0.44 NUT respectively. The effluent COD met the local standard of reuse water in Beijing, China. The average COD volume load of the anaerobic biological tank was 0.0483 kgCOD/(m 3·d) and that of the aeration tank of the MBR was 0.3589 kgCOD/(m 3·d). The sludge load of the MBR was 0.19 kgCOD/(kg·MLSS·d) on average and the maximum of that was 0.4 kgCOD/(kg·MLSS·d). The flux of the A/O membrane bioreactor could be remained at larger than 50 L/(h·m 2·0.1MPa). The results indicated that A/O membrane bioreactor has technical feasibility for treatment of woolen mill wastewater.
文摘To investigate the effects of ozonation on minimizing the excess sludge and enhancing the nitrogen removal in an effluent, batch and continuous experiments in two MBRs with and without sludge ozonation ( namely combined and reference run) were carried out. Through ozonation at a dose of 0. 16 mg O3/mg MLVSS, 53.1% of the treated MLVSS was solubilized, and soluble SCOD/TN ratio of ozonized sludge (OS) was about 8. 6 due to the release of cellular nitrogen-contained materials and SCOD loss by ozone mineralization. In addition, the results of batch nitrification and denitrification tests with OS supernatant indicated that solubilized sludge could act as a reducing power for denitrification and a nitrogen source for nitrification. 40-day operation of-two MBR systems demonstrated that the recirculation of OS into a bioreaetor enabled the combined system have two advantages over the control one. The observed sludge yield (Yobs) was decreased from 0. 13 to 0. 06g MLSS/g COD, while the nitrogen removal was increased from 64. 6% to 72. 3%. And sludge ozonation elevated the inorganic fraction of MLSS, but did not impact sludge activities.
文摘A kind of hybrid membrane process, which integrated powdered activated carbon (PAC) with membrane bioreactor (MBR), was designed for bench scale experiment for micro-polluted surface water treatment. Molecular weight analysis was used to evaluate the efficiency of each unit process and the integration of them. The result of analysis indicated that organic molecules in the treated water from PAC-MBR process were concentrated on the section of below 1000, while PAC adsorption could enhance the removal efficiency of this section due to the high percent of biodegradation recalcitrant organic matter with low molecular weight. It was demonstrated that PAC adsorption and biological treatment promoted each other in PAC-MBR process, with a removal efficiency of 70% for COD Mn and UV 254, 100% for UV 410 and 92% for ammonia nitrogen in its stable stage.