Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) proces...Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.展开更多
In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality ...In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m^2/hr to the final 4.3 L/m^2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.展开更多
A non-toxic and environmentally safe diluent,acetyl tributyl citrate,was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation.Effects of the polymer con...A non-toxic and environmentally safe diluent,acetyl tributyl citrate,was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation.Effects of the polymer concentration on the phase diagram,membrane morphology,hydrophobicity,pore size,porosity and mechanical properties(tensile stress and elongation at break)were investigated.The results showed that the pore size and porosity tended to decrease with increasing polymer concentration,whereas the contact angle,liquid entry pressure and mechanical properties showed the opposite trend.In direct contact membrane distillation operation with 3.5 wt-%sodium chloride solution as the feed solution,the prepared membranes performed high salt rejection(>99.9%).Furthermore,the prepared membranes retained excellent performance in long-term stability tests regarding the permeate flux and salt rejection. ne distillation.展开更多
The endoplasmic reticulum(ER),which is composed of a continuous network of tubules and sheets,forms the most widely distributed membrane system in eukaryotic cells.As a result,it engages a variety of organelles by est...The endoplasmic reticulum(ER),which is composed of a continuous network of tubules and sheets,forms the most widely distributed membrane system in eukaryotic cells.As a result,it engages a variety of organelles by establishing membrane contact sites(MCSs).These contacts regulate organelle positioning and remodeling,including fusion and fission,facilitate precise lipid exchange,and couple vital signaling events.Here,we systematically review recent advances and converging themes on ER-involved organellar contact.The molecular basis,cellular influence,and potential physiological functions for ER/nuclear envelope contacts with mitochondria,Golgi,endosomes,lysosomes,lipid droplets,autophagosomes,and plasma membrane are summarized.展开更多
Over the past decades,membrane-based separation processes have found numerous applications in various industries.Membrane contactor is an important part of the separation of dissolved gas in the early stage of gas det...Over the past decades,membrane-based separation processes have found numerous applications in various industries.Membrane contactor is an important part of the separation of dissolved gas in the early stage of gas detection.In this paper,to improve efficiency in the detection of the dissolved gas phase in seawater,a better flat membrane contactor is proposed to achieve efficient degassing,inspired by the way fish breathe underwater and the special structure of fish gills.The bioinspired flow channel structures in the flat membrane contactor are suggested along with the distribution of internal blood vessels in the gill platelet and the feature of the gill platelet surface.Using 3D printing,the special degassing devices are manufactured,and comparative analysis of relevant flow parameters is made using different flow channels,combined with the CFD simulation.The final result showed that the proposed flow channel in the degasser achieves a better degassing effect compared with conventional flow channel when the membrane contact area is limited,which can provide good conditions for subsequent gas detection.展开更多
In multicellular and even single-celled organisms,individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for develo...In multicellular and even single-celled organisms,individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation.Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes.Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project.In plant science,network analysis has similarly been applied to study the connectivity of plant components at the molecular,subcellular,cellular,organic,and organism levels.Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype.In this review,we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities.We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants.Finally,we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.展开更多
Protein–protein interaction(PPI)networks are key to nearly all aspects of cellular activity.Therefore,the identification of PPIs is important for understanding a specific biological process in an organism.Compared wi...Protein–protein interaction(PPI)networks are key to nearly all aspects of cellular activity.Therefore,the identification of PPIs is important for understanding a specific biological process in an organism.Compared with conventional methods for probing PPIs,the recently described proximity labeling(PL)approach combined with mass spectrometry(MS)-based quantitative proteomics hasemerged as apowerful approach for characterizing PPIs.However,the application of PL in planta remains in its infancy.Here,we summarize recent progress in PL and its potential utilization in plant biology.We specifically summarize advances in PL,including the development and comparison of different PL enzymes and the application of PL for deciphering various molecular interactions in different organisms with an emphasis on plant systems.展开更多
文摘Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.
基金supported by the Special S&T Project on Treatment and Control of Water Pollution (No. 2013ZX07201007-003)
文摘In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m^2/hr to the final 4.3 L/m^2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.
基金supported by the National Natural Science Foundation of China(Grant No.22078146)the National Key R&D Program of China(Grant No.2020YFC0862903)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200091)the Jiangsu Province Department of Human Resources and Social Security(Grant No.JNHB-036)the Materials-Oriented Chemical Engineering State Key Laboratory Program(Grant No.KL19-04)the Priority Academic Program Development of Jiangsu Higher Education Institution(PAPD).N.Tavajohi is grateful for financial support by the Kempe Foundation(Grant No.SMK-1850)Bio4energy program(Grant No.B4E3-TM-1-01).
文摘A non-toxic and environmentally safe diluent,acetyl tributyl citrate,was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation.Effects of the polymer concentration on the phase diagram,membrane morphology,hydrophobicity,pore size,porosity and mechanical properties(tensile stress and elongation at break)were investigated.The results showed that the pore size and porosity tended to decrease with increasing polymer concentration,whereas the contact angle,liquid entry pressure and mechanical properties showed the opposite trend.In direct contact membrane distillation operation with 3.5 wt-%sodium chloride solution as the feed solution,the prepared membranes performed high salt rejection(>99.9%).Furthermore,the prepared membranes retained excellent performance in long-term stability tests regarding the permeate flux and salt rejection. ne distillation.
基金supported by the National Natural Science Foundation of China(92254305)supported by the National Natural Science Foundation of China(92254305,91854204,32130026)+20 种基金supported by National Natural Science Foundation of China(92254302,32225013,32130023)supported by the National Natural Science Foundation of China(91954201,31971289)supported by grants from the National Natural Science Foundation of China(91954207)supported by the National Natural Science Foundation of China(32170753)supported by the National Natural Science Foundation of China(32170692,92154001)supported by grants from the National Natural Science Foundation of China(92254303,32170701)supported by grants from the National Natural Science Foundation of China(32101000,32271273)the Strategic Priority Research Program(XDB39000000)Project for Young Scientists in Basic Research(YSBR-075)of the Chinese Academy of Sciencesthe National Key Research and Development Program of China(2021YFA1300800)National Key Research and Development Program of China(2021YFA0804802,2019YFA0508602)Beijing Natural Science Foundation(JQ20028)New Cornerstone Science Foundation(Xplorer Prize)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB37020304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB37040402)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24030205)the National Key Research and Development Program of China(2021YFA1300301)the National Key Research and Development Program of China(2018YFA0506902)the Fundamental Research Funds for the Central Universities(63213104,63223043)the Talent Training Project at Nankai University(035-BB042112)supported by the Beijing Municipal Science&Technology Commission(5202022)。
文摘The endoplasmic reticulum(ER),which is composed of a continuous network of tubules and sheets,forms the most widely distributed membrane system in eukaryotic cells.As a result,it engages a variety of organelles by establishing membrane contact sites(MCSs).These contacts regulate organelle positioning and remodeling,including fusion and fission,facilitate precise lipid exchange,and couple vital signaling events.Here,we systematically review recent advances and converging themes on ER-involved organellar contact.The molecular basis,cellular influence,and potential physiological functions for ER/nuclear envelope contacts with mitochondria,Golgi,endosomes,lysosomes,lipid droplets,autophagosomes,and plasma membrane are summarized.
基金funded by Science-Technology Development Plan Project of Jilin Province,20210203099SF,Zhiyong ChangScience and Technology Development Project of Jilin Province,20190303061SF,Yongming Yao13th Five-Year Plan Scientific Research Foundation of the Education Department of Jilin Province,JJKH20190190KJ,Zhiyong Chang.
文摘Over the past decades,membrane-based separation processes have found numerous applications in various industries.Membrane contactor is an important part of the separation of dissolved gas in the early stage of gas detection.In this paper,to improve efficiency in the detection of the dissolved gas phase in seawater,a better flat membrane contactor is proposed to achieve efficient degassing,inspired by the way fish breathe underwater and the special structure of fish gills.The bioinspired flow channel structures in the flat membrane contactor are suggested along with the distribution of internal blood vessels in the gill platelet and the feature of the gill platelet surface.Using 3D printing,the special degassing devices are manufactured,and comparative analysis of relevant flow parameters is made using different flow channels,combined with the CFD simulation.The final result showed that the proposed flow channel in the degasser achieves a better degassing effect compared with conventional flow channel when the membrane contact area is limited,which can provide good conditions for subsequent gas detection.
基金supported by the National Natural Science Foundation of China(31530084,32000558,32000483,and31800504)the Programme of Introducing Talents of Discipline to Universities(111 project,B13007)the China Postdoctoral Science Foundation Grant(2019M660494)。
文摘In multicellular and even single-celled organisms,individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation.Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes.Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project.In plant science,network analysis has similarly been applied to study the connectivity of plant components at the molecular,subcellular,cellular,organic,and organism levels.Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype.In this review,we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities.We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants.Finally,we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
基金supported by grants from the National Natural Science Foundation of China(31872637 to Y.Z.and 31830106 to D.L.)NSF-IOS-1354434+1 种基金NSF-IOS-1339185NIH-GM132582 to S.P.D.-K.
文摘Protein–protein interaction(PPI)networks are key to nearly all aspects of cellular activity.Therefore,the identification of PPIs is important for understanding a specific biological process in an organism.Compared with conventional methods for probing PPIs,the recently described proximity labeling(PL)approach combined with mass spectrometry(MS)-based quantitative proteomics hasemerged as apowerful approach for characterizing PPIs.However,the application of PL in planta remains in its infancy.Here,we summarize recent progress in PL and its potential utilization in plant biology.We specifically summarize advances in PL,including the development and comparison of different PL enzymes and the application of PL for deciphering various molecular interactions in different organisms with an emphasis on plant systems.