期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improved blending strategy for membrane modification virtue of surface segregation using surface-tailored amphiphilic nanoparticles
1
作者 Shuai Liang Peng Gao +2 位作者 Xiaoqi Gao Kang Xiao Xia Huang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第6期113-121,共9页
Membrane modification is one of the most feasible and effective solutions to membrane fouling proble.m which tenaciousl.y hampers .the furher au .gmentation of me .rnbrane sep.aration technology.Blending modification ... Membrane modification is one of the most feasible and effective solutions to membrane fouling proble.m which tenaciousl.y hampers .the furher au .gmentation of me .rnbrane sep.aration technology.Blending modification with nanoparticles (NPs), owing to the convenience of being incorporated in established membrane.p.rodu. ction lines, possesses an advantag, eous viability in practical applications.However, the existing blending strategy suffers from a low utilization efficiency due to NP encasement by membrane matrix. The current study proposed an improved blending modification approach with amphiphilic NPs (aNPs), which were prepared through silanization using 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) as coupling agents and ZnO or SiO2 as pristine NPs (pNPs), respectively.The Fourier transform infrared and X-ray photoelectron spectroscopy analyses revealed thepresence of appropriate organic components in both the ZnO and SiO2 aNPs, which verified the success of the silanization process. As compared with the pristine and conventional pNP-blended membranes, both the ZnO aNP-blended and SiO2 aNP-blended membranes with proper silanization (100% and 200% w/w) achieved a significantly increased blending efficiency with more NPs scattenng on the internal and external membrane surfaces under scanning electron microscope observation. This improvement contributed to the increase of membrane hydrophilicity. Nevertheless, an extra dosage of the TMSPMA led to an encasement of NPs, thereby adversely affecting the properties of the resultant membranes. On the basis of all the tests, 100% (w/w) was selected as the optimum TMSPMA dosage for blending modification for both the ZnO and SiO2 types. 展开更多
关键词 membrane modification Nanoparticle Hydrophilic Amphiphilic Blending
原文传递
Effects of Nano-patterning Modification on the Cell Proliferation and Adhesion in Burn Wound Healing of Regenerated Silk Fibroin Membrane
2
作者 ZHANG Yan-ping WEN Yu-qing 《Chinese Journal of Biomedical Engineering(English Edition)》 CAS 2023年第3期131-138,共8页
Objective:To investigate the effect of nano-patterning modification on the cell proliferation and adhesion in burn wound healing of regenerated silk fibroin membrane.Methods:A total of 60 healthy SD mice were randomly... Objective:To investigate the effect of nano-patterning modification on the cell proliferation and adhesion in burn wound healing of regenerated silk fibroin membrane.Methods:A total of 60 healthy SD mice were randomly divided into three groups:group A received treatment involving nano-patterning on the surface of regenerated silk fibroin membrane,group B received treatment with recombinant human epidermal growth factor gel,and group C received the same treatment with recombinant human epidermal growth factor gel,with 20 cases in each group.Wound healing,surface structure,protein adsorption,cell proliferation and adhesion were assessed at intervals of 5th,15th and 25th d after treatment.Results:The findings indicated that:(1)The duration and pace of wound healing in groups A and B surpassed those of group C,with group A exhibiting superior results compared to group B(P<0.05);(2)Histopathological analysis revealed a progressive increase in neovascularization and fibroblast count in wound tissue across the 5th,15th,and 25th days for all three groups,with group C exhibiting a higher count of neovascularization and fibroblasts in unhealed tissue compared to groups A and B.(3)The levels of basic calponin expression in group A and group B showed an increase on the 5th and 15th day,followed by stabilization on the 25th day.In group C,the expression of basic calponin was initially high on the 5th day,and then stabilized on the 15th and 25th day(P<0.05);(4)The expression of fibroblast proliferating cell nuclear antigen in the wound tissue of mice in all three groups peaked on the 15th day and subsequently declined.The expression of PCNA in group A and group B was higher than that in group C at each time point,with group A exhibiting higher levels than group B(P<0.05);(5)As wounds healed,there was a reduction in apoptotic cells within the wound tissues of mice across three groups,with group a exhibiting a lower count compared to groups B and C(P<0.05).Conclusion:Nanopatterning on the surface of regenerated silk fibroin membrane can enhance the biocompatibility of burn wound treatment and promote the proliferation and adhesion of reparative cells. 展开更多
关键词 burn wound nano-patterning modification on regenerated silk fibroin membrane cell proliferation and adhesion recombinant human epidermal growth factor gel
原文传递
Cable-like Au@SiO2 Janus composite nanorods
3
作者 Tian-Hao Han Fu-Xin Liang Zhen-Zhong Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第3期353-356,共4页
Cable-like Au@SiO2 Janus composite nanorods with PS and PEG grafting on both ends respectively are fabricated by skiving in combination of a post favorable modification. The cable-like Au@SiO2 composite nanofibers are... Cable-like Au@SiO2 Janus composite nanorods with PS and PEG grafting on both ends respectively are fabricated by skiving in combination of a post favorable modification. The cable-like Au@SiO2 composite nanofibers are synthesized in the channel of porous anodic aluminium oxide (AAO) membrane. After skiving, the corresponding composite nanorods are obtained. Following, PEG-SH and PS-SH are conjugated onto the two ends of the nanorods by a selective partial modification, respectively. Length and diameter of the Au@SiO2 Janus composite nanorods can be tuned controllably. It can be extended to fabricate a variety of different Janus nanorods with different compositions and microstructures. 展开更多
关键词 AAO membrane Janus Nanomds Skiving Selective modification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部