期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CFD simulation of flow field and resistance in a 19-core tandem ceramic membrane module 被引量:2
1
作者 Yujia Tong Lukuan Huang Weixing Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期625-635,共11页
CFD simulation of the permeation process of a 19-core tandem ceramic membrane module was established to investigate flow field and resistance and its change in permeate flux to the membrane element position and the ch... CFD simulation of the permeation process of a 19-core tandem ceramic membrane module was established to investigate flow field and resistance and its change in permeate flux to the membrane element position and the channel of each membrane element.The results show that when the volume flow rate changes from26 m3·h-1 to 89 m3·h-1,the resistance of each part of the membrane module increases gradually.The increase in resistance loss in the membrane element is faster than the plates and the bell mouths.In a single ceramic membrane module,the maximum difference in flow rate of each membrane tube is 7.23%.In a single membrane tube,the outer ring channels 3–5,3–6,3–7,3–8 are relatively slow.The maximum mass flow deviation from the mean is 2.7%.This work helps to clarify the flow mechanism within the modules,optimize the structure of the equipment and provide a reliable basis for the improvement of industrial ceramic membrane modules. 展开更多
关键词 Ceramic membrane module CFD Field flow RESISTANCE
下载PDF
Introducing 3D-potting:a novel production process for artificial membrane lungs with superior blood flow design
2
作者 Fellx Hesselmann Jannls M.Focke +7 位作者 Peter C.Schlansteln NIklas B.Steuer Andreas Kaesler Sebastlan D.Relnartz Thomas Schmltz-Rode Ulrlch SteInselfer Sebastlan V.Jansen Jutta Arens 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第1期141-152,共12页
Currently,artificial-membrane lungs consist of thousands of hollow fiber membranes where blood flows around the fibers and gas flows inside the fibers,achieving diffusive gas exchange.At both ends of the fibers,the in... Currently,artificial-membrane lungs consist of thousands of hollow fiber membranes where blood flows around the fibers and gas flows inside the fibers,achieving diffusive gas exchange.At both ends of the fibers,the interspaces between the hollow fiber membranes and the plastic housing are filled with glue to separate the gas from the blood phase.During a uniaxial centrifugation process,the glue forms the“potting.”The shape of the cured potting is then determined by the centrifugation process,limiting design possibilities and leading to unfavorable stagnation zones associated with blood clotting.In this study,a new multiaxial centrifugation process was developed,expanding the possible shapes of the potting and allowing for completely new module designs with potentially superior blood flow guidance within the potting margins.Two-phase simulations of the process in conceptual artificial lungs were performed to explore the possibilities of a biaxial centrifugation process and determine suitable parameter sets.A corresponding biaxial centrifugation setup was built to prove feasibility and experimentally validate four conceptual designs,resulting in good agreement with the simulations.In summary,this study shows the feasibility of a multiaxial centrifugation process allowing greater variety in potting shapes,eliminating inefficient stagnation zones and more favorable blood flow conditions in artificial lungs. 展开更多
关键词 Potting process Flow design membrane lung Artificial lung Hollow fiber membrane module Manufacturing
下载PDF
Fouling distribution in forward osmosis membrane process 被引量:2
3
作者 Junseok Lee Bongchul Kim Seungkwan Hong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第6期1348-1354,共7页
Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model deve... Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter- current flow operation of FO membrane process. 展开更多
关键词 forward osmosis membrane module length organic fouling fouling reversibility counter-current flow FO operation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部