期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery Gases 被引量:6
1
作者 Lei Wang Cheng Shao +1 位作者 Hai Wang Hong Wu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第3期230-234,共5页
Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an imp... Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process. 展开更多
关键词 membrane separation hydrogen recovery soft sensor RBF neural networks REFINERY operation optimization
下载PDF
Remove volatile organic compounds(VOCs) with membrane separation techniques 被引量:1
2
作者 ZhanL WangHX 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第2期181-187,共7页
Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techni... Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse. 展开更多
关键词 volatile organic compounds(VOCs) membrane separation techniques REMOVE
下载PDF
Research progress on the substrate for metal-organic framework(MOF) membrane growth for separation 被引量:1
3
作者 Wufeng Wu Xilu Hong +2 位作者 Jiang Fan Yanying Wei Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期299-313,共15页
During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for sep... During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing highquality MOF membranes are also summarized systematically. 展开更多
关键词 membrane separation MOF membrane Metal-organic frameworks SUPPORT Synthesis
下载PDF
Adsorption and membrane separation for removal and recovery of volatile organic compounds 被引量:1
4
作者 Guoqiang Gan Shiying Fan +2 位作者 Xinyong Li Zhongshen Zhang Zhengping Hao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第1期96-115,共20页
Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emis... Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted. 展开更多
关键词 Volatile organic compounds(VOCs) Removal and recovery technology ADSORPTION membrane separation Bibliometric analysis
原文传递
In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation
5
作者 Yafei Su Xuke Zhang +2 位作者 Hui Li Donglai Peng Yatao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期103-111,共9页
Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial abilit... Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units. 展开更多
关键词 Zeolitic imidazolate framework Halloysite nanotubes 2D nanocomposites In-situ growth Dye/salt separation membrane Antibacterial property
下载PDF
Hydrogen Permeation Characteristics of Pd-CuMembrane in Plasma Membrane Reactor
6
作者 Muhd Hadi Iskandar Abd Razak Motoki Tsuda +1 位作者 YukioHayakawa Shinji Kambara 《Energy Engineering》 EI 2024年第2期259-272,共14页
Hydrogen is an alternative energy source that has the potential to replace fossil fuels.One of the hydrogen applications is as a material for Polymer Electrolyte Membrane Fuel Cells(PEMFC)in fuel cell vehicles.High-pu... Hydrogen is an alternative energy source that has the potential to replace fossil fuels.One of the hydrogen applications is as a material for Polymer Electrolyte Membrane Fuel Cells(PEMFC)in fuel cell vehicles.High-purity hydrogen can be obtained using a hydrogen separation membrane to prevent unwanted contaminants from potentially harming the PEMFC components.In this study,we fabricated a plasma membrane reactor and investigated the permeation performance of a hydrogen separation membrane in a plasma membrane reactor utilizing atmospheric pressure plasma.The result showed the hydrogen permeation rate increasing with time as reactor temperature is increased through joule heating.By decreasing the gap length of the reactor from 2 to 1 mm,the hydrogen permeation rate increases by up to 40%.The hydrogen permeation rate increases by 30%when pressure is applied to the plasma membrane reactor by up to 100 kPa. 展开更多
关键词 HYDROGEN ENERGY hydrogen separation membrane atmospheric pressure plasma
下载PDF
Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression 被引量:3
7
作者 Weibin Kong Qi Miao +2 位作者 Peiyong Qin Jan Baeyens Tianwei Tan 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2017年第2期166-176,共11页
Solvent extraction of crude oil from oilseeds is widely applied for its high production capacity and low cost. In this process, solvent recovery and tail gas treatment are usually performed by adsorption, paraffin scr... Solvent extraction of crude oil from oilseeds is widely applied for its high production capacity and low cost. In this process, solvent recovery and tail gas treatment are usually performed by adsorption, paraffin scrubbing, or even cryogenics (at low tail gas flow rates). Membrane separation, which has a lower energy consumption than these techniques, spans a broad range of admissible concentrations and flow rates, and is moreover easily combined with other techniques. Vapor recompression has potentials to reduce the heat loss in association with distillation and evaporation. In this study, we proved the possibility of combining membrane separation and vapor recompression to improve the conventional vegetable oil production, by both experiments and process simulation. Nearly 73% of energy can be saved in the process of vegetable oil extraction by the novel processing approach. By further environmental assessment, several impact categories show that the optimized process is environmentally sustainable. 展开更多
关键词 vegetable oil SOLVENT-EXTRACTION membrane separation vapor recompression environmental and economic assessment
原文传递
Sprayed separation membranes: A systematic review and prospective opportunities
8
作者 Guangjin Zhao Wenjing Han +4 位作者 Liangliang Dong Hongwei Fan Zhou Qu Jiahui Gu Hong Meng 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1143-1160,共18页
Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innova... Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes. 展开更多
关键词 membrane separation technology membrane preparation technique Spray technique SCALABILITY Industrialized application
下载PDF
Solvent-Less Vapor-Phase Fabrication of Membranes for Sustainable Separation Processes
9
作者 Junjie Zhao Karen K.Gleason 《Engineering》 SCIE EI 2020年第12期1432-1442,共11页
Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication... Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication for membranes not only eliminates potential environmental issues with organic solvents,but also solves the swelling problems that occur with delicate polymer substrates.Furthermore,the activation procedures often required for synthesizing microporous materials such as metal–organic frameworks(MOFs)can be reduced when solvent-less vapor-phase approaches are employed.This perspective covers several vacuum deposition processes,including initiated chemical vapor deposition(iCVD),initiated plasma-enhanced chemical vapor deposition(iPECVD),solvent-less vapor deposition followed by in situ polymerization(SLIP),atomic layer deposition(ALD),and molecular layer deposition(MLD).These solvent-less vapor-phase methods are powerful in creating ultrathin selective layers for thin-film composite membranes and advantageous in conformally coating nanoscale pores for the precise modification of pore size and internal functionalities.The resulting membranes have shown promising performance for gas separation,nanofiltration,desalination,and water/oil separation.Further development of novel membrane materials and the scaling up of high-throughput reactors for solvent-less vapor-phase processes are necessary in order to make a real impact on the chemical industry in the future. 展开更多
关键词 membrane separation Chemical vapor deposition Atomic layer deposition Molecular layer deposition Thin films Metal-organic frameworks POLYMERS Advanced manufacturing
下载PDF
Numerical simulation and experimental study on eggshell membrane separation device
10
作者 Yuan Chi Yong Wang +2 位作者 Mengfu Li Jie Ren Yujie Chi 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第2期173-183,共11页
In order to provide theoretical guidance for separating egg membrane from eggshell by using mechanical agitation,CFD was used to explore the flow characteristics in stirred tank,using the Sliding Grid method to deal w... In order to provide theoretical guidance for separating egg membrane from eggshell by using mechanical agitation,CFD was used to explore the flow characteristics in stirred tank,using the Sliding Grid method to deal with the impeller rotational velocity zone in flow field,and using the Euler model to deal with liquid-solid two-phase flow.This study explored the influence of dish-shape bottom or flat-shape bottom,the clearance size between baffle and the side wall,and the axial height of impeller to bottom on suspension state of particles,solids holdup distribution,solid phase velocity and power number by CFD.Simulation results showed that better particles suspension effect in dish-shape tank can reduce particles accumulation at the bottom and power consumption.If there was a small clearance size(S)between the baffle and the side wall of the stirred tank,it would reduce particles accumulation at the bottom,and reduce the power consumption.However,too large S would decrease the suspension height of particles,not only cannot strengthen the main flow,but also lead to most fluid through clearance forming tangential flow,simulation results showed that S=6 mm was perfect.While decreased axial height of impeller(C)to bottom,particles accumulation at the bottom was decreased,but power consumption would increase,simulation results showed that C=H/5(H is height of liquid surface)was perfect.According to the simulation results,the structure of the stirring tank was optimized.At the same time,the influences of stirring rotational velocity,stirring time,solid-liquid ratio and separating medium temperature on egg membrane recovery were also studied by experiment,and optimal parameter combination of factors was obtained.The experiment results showed while the stirring time was 17.1 min,stirring rotational velocity was 350 r/min,solid-liquid ratio was 1:17 g/mL,the separating medium temperature was 32℃,the membrane recovery rate can reach above 89%.The device improves the recovery and utilization of discarded eggshell,and provides a reference for the solid-liquid two-phase flow and related study. 展开更多
关键词 liquid-solid two-phase flow mechanical stirring field characteristics eggshell membrane separation
原文传递
The facile method developed for preparing polyvinylidene fluoride plasma separation membrane via macromolecular interaction 被引量:1
11
作者 Juanjuan Liu Xiaolong Lu +5 位作者 Guiming Shu Ke Li Shuyun Zheng Xiao Kong Tao Li Jun Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期140-149,共10页
The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF ma... The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF macro-pore plasma separation membrane by non-solvent induced phase separation(NIPS). Herein, a facile strategy is proposed to prepare PVDF macro-pore plasma separation membrane via macromolecular interaction. ATR-FTIR and ^(1)H NMR showed that the intermolecular interaction existed between polyethylene oxide(PEO) and polyvinylpyrrolidone(PVP). It could significantly affect the PVDF macro-pore membrane structure. The maximum pore of the PVDF membrane could be effectively adjusted from small-pore/medium-pore to macro-pore by changing the molecular weight of PEO. The PVDF macro-pore membrane was obtained successfully when PEO-200 k existed with PVP. It exhibited higher plasma separation properties than the currently used plasma separation membrane.Moreover, it had excellent hemocompatibility due to the similar plasma effect, hemolysis, prothrombin time, blood effect and complement C_(3a) effect with the current utilized plasma separation membrane,implying its great potential application. The proposed facile strategy in this work provides a new method to prepare PVDF macro-pore plasma separation membrane by NIPS. 展开更多
关键词 membranes Macro-pore plasma separation membrane Hemocompatibility PURIFICATION Biomedical engineering
下载PDF
Advances in high carbon dioxide separation performance of poly(ethylene oxide)-based membranes 被引量:1
12
作者 Samaneh Bandehali Abdolreza Moghadassi +3 位作者 Fahime Parvizian Sayed Mohsen Hosseini Takeshi Matsuura Ezatollah Joudaki 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期30-52,I0002,共24页
Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,t... Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased. 展开更多
关键词 membrane gas separation Molecular design Poly(ethylene oxide) CO2/CH4 separation
下载PDF
Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation 被引量:3
13
作者 Yongtao Qiu Jizhong Ren +2 位作者 Dan Zhao Hui Li Maicun Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期122-130,共9页
Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting a... Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect. 展开更多
关键词 Poly(amide-6-b-ethylene oxide) Ionic liquid Carbon dioxide separation Blend membrane
下载PDF
Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53 被引量:6
14
作者 Haitao Zhu Xingming Jie +3 位作者 Lina Wang Guodong Kang Dandan Liu Yiming Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期781-790,共10页
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ... Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization. 展开更多
关键词 Post-functionalized S-MIL-53 Mixed matrix hollow fiber membranes CO2 permeance Plasticization Gas separation
下载PDF
SEPARATION OF FORMIC ACID-WATER AZEOTROPIC MIXTURES BY MEMBRANE DISTILLATION 被引量:1
15
作者 Ying KONG Yong Lie WU Ji Ping XU Changchun Institute of Applied Chemistry, Academia Sinica, Changchun 130022 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第6期477-478,共2页
The azeotrope disappeared when the formic acid-water mixtures were treated by membrane distillation. Membrane distillation were used for separation of formic acid-water azeotropic mixtures for the first time.
关键词 separation OF FORMIC ACID-WATER AZEOTROPIC MIXTURES BY membrane DISTILLATION ACID
下载PDF
TEMPERATURE DEPENDENCE OF AIR SEPARATION OF LIQUID CRYSTALLINE TRIHEPTYL CELLULOSE/ETHYL CELLULOSE MEMBRANES
16
作者 Xin Gul LI Mei Rong HUANG Gang LIN Center of Membrane Separation Engineering,Department of Textite Chemical Engineering,Tianjin Institute of Textile Science and Technology,Tianjin 300160 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第9期833-836,共4页
Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperature... Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperatures.With increasing temperature from 25 to 85℃,the flux QOEA of O_2-enriched air(OEA),O_2 permselectivity and the O_2 concentration Yo_2 in the OEA all increase.The membranes show a unique trend in their Yo_2~QOEA relationship,that is,the air separation capability increases simultaneously with the OEA permeation capability.The magnitudes of QOEA and Yo_2 for 17μm-thick membrane after the testg time of 36hours at 70℃ are 5×10^(-4)cm^3 (STP)/s·cm^2 and 37.6%,respectively.The air separation capability depends slightly on membrane forming solvents. 展开更多
关键词 OEA EC TEMPERATURE DEPENDENCE OF AIR separation OF LIQUID CRYSTALLINE TRIHEPTYL CELLULOSE/ETHYL CELLULOSE membraneS THF QOE ASF THC
下载PDF
Growing Biomorphic Transition Metal Dichalcogenides and Their Alloys Toward High Permeable Membranes and Efficient Electrocatalysts Applications
17
作者 Lijie Zhu Yahuan Huan +5 位作者 Zhaoqian Zhang Pengfei Yang Jingyi Hu Yuping Shi Fangfang Cui Yanfeng Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期150-160,共11页
3D architecratured transition metal dichalcogenides constructed by atomically thin layers are appealing building blocks in various applications,such as catalysts,energy storage,conversions,sensors,and so on.However,th... 3D architecratured transition metal dichalcogenides constructed by atomically thin layers are appealing building blocks in various applications,such as catalysts,energy storage,conversions,sensors,and so on.However,the direct growth of 3D transition metal dichalcogenides architectures with high crystal quality and well-controlled size/thickness remains a huge challenge.Herein,we report a facile,highly-repeatable,and versatile chemical vapor deposition strategy,for the mass production of high-quality 3D-architecratured transition metal dichalcogenides(e.g.,MoS_(2),WS_(2),and ReS_(2))and their alloys(e.g.,W_(x)Mo(1–x)S_(2)and Rex Mo_((1–x))S_(2))nanosheets on naturally abundant and low-cost diatomite templates.Particularly,the purified transition metal dichalcogenides products exhibit unique and designable 3D biomorphic hierarchical microstructures,controllable layer thicknesses,tailorable chemical compositions,and good crystallinities.The weak interlayer interactions endow them with good dispersity in solutions to form stable additive-free inks for solution-processing-based applications,for example,high-permeable and high-stable separation membranes for water purification,and efficient electrocatalysts for hydrogen evolution reactions.This work paves ways for the low-cost,mass production of versatile transition metal dichalcogenides powder-like materials with designable structures and properties,toward energy/environmental-related applications and beyond. 展开更多
关键词 biomorphic chemical vapor deposition hydrogen evolution reactions separation membranes transition metal dichalcogenides
下载PDF
Hydrochloric acid recovery from rare earth chloride solutions by vacuum membrane distillation 被引量:7
18
作者 TANG Jianjun ZHOU Kanggen 《Rare Metals》 SCIE EI CAS CSCD 2006年第3期287-292,共6页
The possibility of the recovery of hydrochloric acid from rare earth (RE) chloride solutions was first experimentally studied by batch vacuum membrane distillation (VMD). The recovery by continuous VMD was also st... The possibility of the recovery of hydrochloric acid from rare earth (RE) chloride solutions was first experimentally studied by batch vacuum membrane distillation (VMD). The recovery by continuous VMD was also studied to devise methods that enabled the operation of VMD setup in a stable condition as well as to increase the membrane-operating life The results indicated that HCl separation with RE by VMD was possible, and the recovery ratio of 80% could be achieved by batch VMD. In continuous VMD, when the temperature of circular solutions, circular rate, and downstream pressure was 62-63℃, 5.4 cm/s, and 9.33 kPa, respectively, the HCl concentration in circular solutions and the processing capacity per membrane area were obtained. The mathematical results were in accordance with the experimental ones. 展开更多
关键词 membrane separation hydrochloric acid recovery vacuum membrane distillation rare earth mathematical stimulation
下载PDF
Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance 被引量:5
19
作者 Shujuan Xiao Xiaowen Huo +3 位作者 Shuxin Fan Kui Zhao Shouwu Yu Xiaoyao Tan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期110-120,共11页
To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyr... To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyrrolidone(PVP) as the porogen,N-Methyl pyrrolidone(NMP) as the solvent,and MOF-CAU-1(Al_(4)(OH)_(2)(OCH_(3))_4(H_2 N-BDC)_(3)·xH_(2) O) as the filler,PPSU/CAU-1 mixed matrix membrane(MMM) was prepared by an immersion precipitation and phase transformation technique.By changing the amount of MOF-CAU-1,the properties and performance of the MMM membrane were investigated in terms of hydrophilicity,pore morphology,surface roughness,and dye removal.The results show that the highest pure water flux of the mixed reached 47.9 L·m^(-2)·h^(-1), when the CAU-1 addition amount was 1.0 wt%, which was 23% higher than that of the pure PPSU membrane.Both the rejection rate and the antifouling performance of the MMM membrane also noticeably improved. 展开更多
关键词 Mixed matrix membranes ANTIFOULING Metal-organic frameworks membrane separation technology
下载PDF
Vehicle fuel from biogas with carbon membranes; a comparison between simulation predictions and actual field demonstration 被引量:1
20
作者 Shamim Haider Arne Lindbrathen +3 位作者 Jon Arvid Lie Petter Vattekar Carstensen ThorbjØrn Johannessen May-Britt Hagg 《Green Energy & Environment》 SCIE 2018年第3期266-276,共11页
The energy contents of biogas could be significantly enhanced by upgrading it to vehicle fuel quality.A pilot-scale separation plant based on carbon hollow fiber membranes for upgrading biogas to vehicle fuel quality ... The energy contents of biogas could be significantly enhanced by upgrading it to vehicle fuel quality.A pilot-scale separation plant based on carbon hollow fiber membranes for upgrading biogas to vehicle fuel quality was constructed and operated at the biogas plant,Gl?r IKS,Lillehammer Norway.Vehicle fuel quality according to Swedish legislation was successfully achieved in a single stage separation process.The raw biogas from anaerobic digestion of food waste contained 64±3 mol%CH_4,30–35 mol%CO_2 and less than one percent of N_2 and a minor amount of other impurities.The raw biogas was available at 1.03 bar with a maximum flow rate of 60 Nm^3h^(à1).Pre-treatment of biogas was performed to remove bulk H_2O and H_2S contents up to the required limits in the vehicle fuel before entering to membrane system.The membrane separation plant was designed to process 60 Nm^3h^(à1)of raw biogas at pressure up to 21 bar.The initial tests were,however,performed for the feed flow rate of 10 Nm^3h^(à1)at 21 bar.The successful operation of the pilot plant separation was continuously run for 192 h(8days).The CH_4 purity of 96%and maximum CH_4 recovery of 98%was reached in a short-term test of 5 h.The permeate stream contained over20 mol%CH_4which could be used for the heating application.Aspen Hysys~?was integrated with Chem Brane(in-house developed membrane model)to run the simulations for estimation of membrane area and energy requirement of the pilot plant.Cost estimation was performed based on simulation data and later compared with actual field results. 展开更多
关键词 Biogas upgrading Pilot-scale demonstration membrane separation Process simulations
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部