Five new aza-crown ethers have been prepared by the condensation of 2,6-bis[(2-formylphenyl)oxymethyl] pyridine with different diamino compounds in hot methanol, the bis-Schiff bases without isolation were reduced wit...Five new aza-crown ethers have been prepared by the condensation of 2,6-bis[(2-formylphenyl)oxymethyl] pyridine with different diamino compounds in hot methanol, the bis-Schiff bases without isolation were reduced with NaBH4 to afford the corresponding aza-crown ethers. The liquid membrane transport or alkali cations using the five new macrocycles as the ion-carriers was also studied.展开更多
Three functional substituted crown ethers were synthesized as liquid membrane transport carriers for amino acids. The result obtained shows that this kind of ditopic ligands can transport sodium salt of amino acids in...Three functional substituted crown ethers were synthesized as liquid membrane transport carriers for amino acids. The result obtained shows that this kind of ditopic ligands can transport sodium salt of amino acids in good rate value especially the one with two pyridinyl groups as binding site outside the macrocycle.展开更多
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production...Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.展开更多
A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra(2-cyanobenzyl)-1,10-dioxa-4,7,13,16-tetraazacyclooctadecane, C 44H 48N 8O 2, has been synthesized and structurally characterized. It cr...A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra(2-cyanobenzyl)-1,10-dioxa-4,7,13,16-tetraazacyclooctadecane, C 44H 48N 8O 2, has been synthesized and structurally characterized. It crystallizes in the monoclinic system, space group P2 1/c with a=1.1176(3) nm, b=2.1906(7) nm, c=0.8430(3) nm, V=2.0132(10) nm 3, β=102.740(5)°, Z=4, D c=1.189 g/cm 3, final R 1=0.0460, wR 2=0.0803. The liquid membrane transports of alkali metal cations using the new macrocycle as the ion-carrier were also studied. Compared with some macrocyclic ligands, our newly synthesized ligand showed a good selectivity ratio for Na +/Li +.展开更多
Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition,solute storage,cell metabolism,cell signaling,osmoregulation,cell growth,and stress responses.Completion ...Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition,solute storage,cell metabolism,cell signaling,osmoregulation,cell growth,and stress responses.Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level.Genes coding for a galaxy of pumps,channels,and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems.Furthermore,signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms.Here,we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools.We also provide our perspectives for future studies in the field.展开更多
A few derivatives of calixarenes have been synthesized and characterized by IR, ^1H NNtR, thermal and elemental analysis. The transport of potassium or calcium ion through the liquid membrane, in which the derivatives...A few derivatives of calixarenes have been synthesized and characterized by IR, ^1H NNtR, thermal and elemental analysis. The transport of potassium or calcium ion through the liquid membrane, in which the derivatives act as carriers, has been studied. The electron-effect of the substituent on the upper rim of calixarene possesses important effect on the net transport of metal ions. The p- tert-butylcalix[4]arene is the best carrier of calcium ion, compared with p-tert-calix[4]arene(n = 4, 6, 8). The ptert-butylcalix[4]arene acid is better than p-tert-butylcalix [4]arene. The calixr43crown is the best carrier of calcium ions of all the carriers. The pH gradient between the source and receiving phase, and the concentration of K^+ , Ca^2+ ions in the source phase affect mainly transport. After the transport, the pH value of the source phase is found to be decreased, once the calix [n ] arene derivatives act as carrier. But it is not the case for the calix[n] crowns. It might be interpreted as the result of their different mechanisms.展开更多
Carbon dioxide(CO_(2))capture by gas-separation membranes has become increasingly attractive due to its high energy efficiency,relatively low cost,and environmental impact.Polyvinylamine(PVAm)-based facilitated transp...Carbon dioxide(CO_(2))capture by gas-separation membranes has become increasingly attractive due to its high energy efficiency,relatively low cost,and environmental impact.Polyvinylamine(PVAm)-based facilitated transport(FT)membranes were developed in the last decade for CO_(2) capture.This work discusses the challenges of applying PVAm-based FT membranes from materials to processes for postcombustion CO_(2) capture in power plants and cement factories.Experiences learned from a pilot demonstration system can be used to guide the design of other membranes for CO_(2) capture.The importance of module and process design is emphasized in the achievement of a high-performance membrane system.Moreover,the results from process simulation and cost estimation indicate that a three-stage membrane system is feasible for achieving a high CO_(2) purity of 95 vol%.The specific CO_(2) capture cost was found to significantly depend on the required CO_(2) capture ratio,and a moderate CO_(2) capture ratio of 50%presented a cost of 63.7USD per tonne CO_(2) captured.Thus,FT membrane systems were found to be more competitive for partial CO_(2) capture.展开更多
Characterization of conformation kinetics of proteins at the interfaces is crucial for understanding the biornolecular functions and the mechanisms of interfacial biological action. But it requires to capture the dyna...Characterization of conformation kinetics of proteins at the interfaces is crucial for understanding the biornolecular functions and the mechanisms of interfacial biological action. But it requires to capture the dynamic structures of proteins at the interfaces with suffi- cient structural and temporal resolutions. Here, we demonstrate that a ferntosecond sum frequency generation vibrational spectroscopy (SFG-VS) system developed by our group provides a powerful tool for monitoring the real-tirne peptide transport across the membranes with time resolution of less than one second. By probing the real-time SFG signals in the arnide I and arnide A bands as WALP23 interacts with DMPG lipid bilayer, it is found that WALP23 is initially absorbed at the gel-phase DMPG bilayer with a random coil structure. The absorption of WALP23 on the surface leads to the surface charge reversal and thus changes the orientation of rnembrane-bound water. As the DMPG bilayer changes from gel phase into fluid phase, WALP23 inserts into the fluid-phase bilayer with its N-terminal end moving across the membrane, which causes the membrane dehydration and the transition of WALP23 conformation from random coil to mixed helix/loop structure and then to pure α-helical structure. The established system is ready to be employed in characterizing other interracial fast processes, which will be certainly helpful for providing a clear physical picture of the interracial phenomena.展开更多
GABA transporter 1(GAT1) takes important roles in multiple physiological processes through the uptake and release of GABA, but the regulation of GAT1 gene expression in different tissues is rarely known. To address th...GABA transporter 1(GAT1) takes important roles in multiple physiological processes through the uptake and release of GABA, but the regulation of GAT1 gene expression in different tissues is rarely known. To address the question, first, 5’ Rapid amplification of cDNA end (RACE) was used to determine GAT1 transcriptional starting sites in neonatal mouse cerebral cortex and intestine, adult mouse brain and adult rat testis. The products of 5’RACE were confirmed by DNA sequencing. We found that the transcript of GAT1 in neonatal mouse cerebral cortex and adult mouse brain starts at the same site (inside of exon 1), while in mouse intestine, GAT1 starts transcription in intron 1, and in rat testis, the transcript of GAT1 has an additional untranslation exon to the 5’ direction.展开更多
The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE ...The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.展开更多
New polyimide containing calix [4] arene moieties on the polymer backbone was successfully synthesized in N- methy1 - 2 - pyrrolidone (NMP) by polycondensations of 3, 3', 4, 4'- oxydiphthalic anhydride (ODPA) wi...New polyimide containing calix [4] arene moieties on the polymer backbone was successfully synthesized in N- methy1 - 2 - pyrrolidone (NMP) by polycondensations of 3, 3', 4, 4'- oxydiphthalic anhydride (ODPA) with the diaminocalix[4]arene monomer using 3,3'- dimethy1- 4, 4'- The polyimide prepared is soluble in common solvents, such as NMP, DMAc, DMF and chloroform. The polyimide films obtained have excellent thermal stability and mechanical property. At the same time, the liquid membrane transport of potassium ions by the new polyimide was investigated, which testified that compared to ODPA-DADPM polyimide, the polyimide containing culix[4] arenes has the transport ability to metal ions in regard to bulky, cone-like calix [-4] arene moieties.展开更多
Salinity is one of the major abiotic stresses which impose constraints to plant growth and production.Rice(Oryza sativa L.)is one of the most important staple food crops and a model monocot plant.Its production is exp...Salinity is one of the major abiotic stresses which impose constraints to plant growth and production.Rice(Oryza sativa L.)is one of the most important staple food crops and a model monocot plant.Its production is expanding into regions that are affected by soil salinity,requiring cultivars more tolerant to saline conditions.Understanding the molecular mechanisms of such tolerance could lay a foundation for varietal improvement of salt tolerance in rice.In spite of extensive studies exploring the mechanism of salt tolerance,there has been limited progress in breeding for increased salinity tolerance.In this review,we summarize the information about the major molecular mechanisms underlying salinity tolerance in rice and further discuss the limitations in breeding for salinity tolerance.We show that numerous gene families and interaction networks are involved in the regulation of rice responses to salinity,prompting a need for a comprehensive functional analysis.We also show that most studies are based on whole-plant level analyses with only a few reports focused on tissue-and/or cell-specific gene expression.More details of salt-responsive channel and transporter activities at tissue-and cell-specific level still need to be documented before these traits can be incorporated into elite rice germplasm.Thus,future studies should focus on diversity of available genetic resources and,particular,wild rice relatives,to reincorporate salinity tolerance traits lost during domestication.展开更多
A fundamental problem for cells with their fragile membranes is the control of their volume.The primordial solution to this problem is the active transport of ions across the cell membrane to modulate the intracellula...A fundamental problem for cells with their fragile membranes is the control of their volume.The primordial solution to this problem is the active transport of ions across the cell membrane to modulate the intracellular osmotic pressure.In this work,a theoretical model of the cellular pump-leak mechanism is proposed within the general framework of linear nonequilibrium thermodynamics.The model is expressed with phenomenological equations that describe passive and active ionic transport across cell membranes,supplemented by an equation for the membrane potential that accounts for the electrogenicity of the ionic pumps.For active ionic transport,the model predicts that the intracellular fluid pressure will be balanced by the osmotic pressure and a new pressure component that arises from the active ionic fluxes.A model for the pump-leak mechanism in an idealized human cell is introduced to demonstrate the applicability of the proposed theory.展开更多
OBJECTIVE: To investigate the distribution, changes and a possible role for retinal dopamine transporter (DAT) in experimental myopia in chickens. METHODS: Two-day-old chickens were divided into four groups. Chicken e...OBJECTIVE: To investigate the distribution, changes and a possible role for retinal dopamine transporter (DAT) in experimental myopia in chickens. METHODS: Two-day-old chickens were divided into four groups. Chicken eyes were fitted with lenses of -10D,-20D and translucent goggles unilaterally. Normal eyes were used as controls. After 3 wk, all chickens were given an intramuscular injection of (125)I-beta-CIT 2beta-carbomethoxy-3beta-(4-iodophenyl)tropane and sacrificed two hours post injection. Retinal pigment epithelium (RPE) and the neural retina were obtained together or RPE was dissected out from the neural retina. Radioactive DAT from each specimen was assayed by gamma-counter. RESULTS: Retinal DAT was detected in RPE specimens rather than in the neural retina in all eyes. Radioactive DAT in myopic eyes was higher, compared with control eyes. CONCLUSIONS: Retinal DAT is mainly located in the RPE and may be involved in the formation of lens induced myopia (LIM) and form deprivation myopia (FDM). These methods may provide a new approach for further studying the role of the dopamine system in experimental myopia.展开更多
In this work, a dual-phase material consisting Gd0.1Ce0.9O2-δ (GDC, 60 wt%) was synthesized. of La0.7Ca0.3Cr0.95Zn0.05O3-δ (LCCZ, 40 wt%) and Properties including phase structure, sintering behavior, electrical ...In this work, a dual-phase material consisting Gd0.1Ce0.9O2-δ (GDC, 60 wt%) was synthesized. of La0.7Ca0.3Cr0.95Zn0.05O3-δ (LCCZ, 40 wt%) and Properties including phase structure, sintering behavior, electrical conductivity and oxygen permeability for LCCZ-GDC were evaluated. The results show that dense LCCZ-GDC dual-phase disks were obtained at the sintering temperature of 1250, 1300, 1350 and 1400 ℃ by tape casting and high temperature sintering method. The grain sizes of both GDC and LCCZ grew up with the increasing of sintering temperature. The average grain size of GDC was about 0.5, 0.8, 1.4, 1.8 μm while the average grain size of LCCZ was about 0.8, 1.5, 1.8 and 2 pm after sintering at 1250, 1300, 1350 and 1400℃, respectively. Oxygen flux of LCCZ-GDC decreased with the increase of sintering temperature from 1250 to 1400 ℃. The oxygen flux of LCCZ-GDC sintered at 1250 ℃ reached 0.079 mL/min/cm2 at 975℃ with a membrane thickness of 800 μm. Dual-phase material of LCCZ-GDC will be a promising oxygen transport membrane material for its low sintering temperature and good microstructure.展开更多
In the face of growing environmental pollution, developing a fuel-cell-driven shunting locomotive is a great challenge in China for environmental protection and energy saving, which combines the environmental advantag...In the face of growing environmental pollution, developing a fuel-cell-driven shunting locomotive is a great challenge in China for environmental protection and energy saving, which combines the environmental advantages of an electric locomotive with the lower infrastructure costs of a diesel-electric locomotive. In this paper, the investigation status and the development trend of the fuel-cell-driven shunting locomotive were introduced. Through innovation of the power system using fuel cells, an experiment prototype of a fuel-cell shunting locomotive was developed, which would reduce the effects on the environment of the existing locomotives. This was the first locomotive to use a proton exchange membrane fuel-cell (PEMFC) power plant in China. From October 2012, we started to test the fuel-cell power plant and further test runs on the test rail-line in Chengdu, Sichuan. The achieved encouraging results can provide fundamental data for the modification of the current individual fuel cell locomotives or further development of the fuel-cell hybrid ones in China.展开更多
In the present paper, a polymer inclusion membrane (PIM) containing polyvinyl chloride (PVC), and bis-(2-ethylhexyl) phosphate (D2EHPA) which was used as extracting agent was used for the recovery of In(Ⅲ) ...In the present paper, a polymer inclusion membrane (PIM) containing polyvinyl chloride (PVC), and bis-(2-ethylhexyl) phosphate (D2EHPA) which was used as extracting agent was used for the recovery of In(Ⅲ) ions in hydrochloric acid medium. The effects of carrier concentration, feed phase pH, strip phase HCI concentration, temperature on the transport, and the membrane's stability and thickness were examined. And the conditions for the selective separation of In(Ⅲ) and CU(Ⅱ) were optimized. The results showed that the transport of In(Ⅲ) across PIM was consistent with the first order kinetics equation, and also it was controlled by both the diffusion of the metal complex in the membrane and the chemical reaction at the interface of the boundary layers. The transport flux (J0) was inversely proportional to the membrane thickness, however, the transport stability improved as the membrane thickness increased. The transport flux of In(Ⅲ) and CU(Ⅱ) was decreased by excessive acidity of feed phase and high concentration of Cl^- . The selectivity separation coefficient of In(Ⅲ)/Cu(Ⅱ) was up to 34.33 when the original concentration of both In(Ⅲ) and Cu(Ⅱ) was 80 mg· L^ -1 as well as the pH of the feed phase and the concentration of Cl^- in the adjusting context were 0.6 and 0.5 mol· L^-1, respectively. Within the range of pH = 1-3, the separation selectivity of In(Ⅲ)/Cu(Ⅱ) reached the peak in the case when the Cl^- concentration was 0.7 mol·L^ -1.展开更多
In this work, we studied two copolymers formed by segments of a rubbery polyether(PPO or PEO) and of a glassy polyimide(BPDA-ODA or BKDA-ODA) suitable for gas separation and CO2 capture. Firstly, we assessed the a...In this work, we studied two copolymers formed by segments of a rubbery polyether(PPO or PEO) and of a glassy polyimide(BPDA-ODA or BKDA-ODA) suitable for gas separation and CO2 capture. Firstly, we assessed the absorption of water vapor in the materials, as a function of relative humidity(R.H.), finding that the humidity uptake of the copolymers lies between that of the corresponding pure homopolymers values.Furthermore, we studied the effect of humidity on CO2 and N2 permeability, as well as on CO2/N2 selectivity, up to R.H. of 75%. The permeability decreases with increasing humidity, while the ideal selectivity remains approximately constant in the entire range of water activity investigated. The humidity-induced decrease of permeability in the copolymers is much smaller than the one observed in polyimides such as Matrimid? confirming the positive effect of the polyether phase on the membrane performance.Finally, we modeled the humidity-induced decrease of gas solubility, diffusivity and, consequently, permeability, using a suitable approach that considers the free volume theory for diffusion and LF model for solubility. Such model allows estimating the extent of competition that the gases undergo with water during sorption in the membranes, as a function of the relative humidity, as well as the expected reduction of free volume by means of water molecules occupation and consequent reduction of diffusivity.展开更多
Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently ident...Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many levels, ranging from organelles to the whole plant. Many family members are essential for cellular homeostasis and reproductive success. Although most transporters do not directly participate in long-distance transport, their indirect roles greatly impact carbon allocation and transport flux to the heterotrophic tissues of the plant. Functional characterization of some members from both gene families has revealed their diverse roles in carbohydrate partitioning, phloem function, resource allocation, plant defense, and sugar signaling. This review highlights the broad impacts and implications of monosaccharide transport by describing some of the functional roles of the monosaccharide transporter(-like) superfamily and the SWEET transporter family.展开更多
The erythrocyte hemolysis was examined to assure Rb^+ to have a weak toxicity toward human body. The way of Rb^+ transporting into human erythrocytes was determined, and the factors to affect this transport process ...The erythrocyte hemolysis was examined to assure Rb^+ to have a weak toxicity toward human body. The way of Rb^+ transporting into human erythrocytes was determined, and the factors to affect this transport process were evaluated. The effects of extracellular concentration of Rb^+, incubation temperature, incubation time, medium pH, and specific inhibitors were investigated via flame atomic absorption spectrometry. The results indicated that the membrane transport of Rb^+ through human erythrocytes was controlled mainly by both active transport and simple diffusion. Every mentioned factor took a positive effect on the Rb^+ uptake by human erythrocytes, however neither DIDS nor nefidpine could inhibit the uptake of Rb^+.展开更多
基金We are gr ateful to the Natural Sc ience Foundation of Shandong Province for financial support ofthiswork (Q97B03123).
文摘Five new aza-crown ethers have been prepared by the condensation of 2,6-bis[(2-formylphenyl)oxymethyl] pyridine with different diamino compounds in hot methanol, the bis-Schiff bases without isolation were reduced with NaBH4 to afford the corresponding aza-crown ethers. The liquid membrane transport or alkali cations using the five new macrocycles as the ion-carriers was also studied.
基金We are grateful to the National Natural Science Foundation of China(29872034)the Natural Science Foundation of Henan Province for the financial support.
文摘Three functional substituted crown ethers were synthesized as liquid membrane transport carriers for amino acids. The result obtained shows that this kind of ditopic ligands can transport sodium salt of amino acids in good rate value especially the one with two pyridinyl groups as binding site outside the macrocycle.
基金Financial support by the Spanish Ministry of Science(PID2022139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AE I/10.13039/501100011033)with funding from Next Generation EU(PRTR-C17.I1)within the Planes Complementarios con CCAA(Area of Green Hydrogen and Energy)+2 种基金carried out in the CSIC Interdisciplinary Thematic Platform(PTI+)Transición Energética Sostenible+(PTI-TRANSENER+)the Universitat Politècnica de València(UPV)the support of the Servicio de Microscopía Elcectronica of the UPV。
文摘Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.
基金theMunicipalNaturalScienceFoundationofBeijing (No .2 0 2 2 0 11)
文摘A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra(2-cyanobenzyl)-1,10-dioxa-4,7,13,16-tetraazacyclooctadecane, C 44H 48N 8O 2, has been synthesized and structurally characterized. It crystallizes in the monoclinic system, space group P2 1/c with a=1.1176(3) nm, b=2.1906(7) nm, c=0.8430(3) nm, V=2.0132(10) nm 3, β=102.740(5)°, Z=4, D c=1.189 g/cm 3, final R 1=0.0460, wR 2=0.0803. The liquid membrane transports of alkali metal cations using the new macrocycle as the ion-carrier were also studied. Compared with some macrocyclic ligands, our newly synthesized ligand showed a good selectivity ratio for Na +/Li +.
基金This work is supported by the National Science Foundation(MCB-1714795)Innovative Genomics Institute at University of CaliforniaBerkeley to S.L.,and the National Natural Science Foundation(grant no.31770266)to F.-G.Z.C.W.is sponsored in part by Tang Distinguished Scholarship at University of California-Berkeley.
文摘Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition,solute storage,cell metabolism,cell signaling,osmoregulation,cell growth,and stress responses.Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level.Genes coding for a galaxy of pumps,channels,and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems.Furthermore,signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms.Here,we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools.We also provide our perspectives for future studies in the field.
文摘A few derivatives of calixarenes have been synthesized and characterized by IR, ^1H NNtR, thermal and elemental analysis. The transport of potassium or calcium ion through the liquid membrane, in which the derivatives act as carriers, has been studied. The electron-effect of the substituent on the upper rim of calixarene possesses important effect on the net transport of metal ions. The p- tert-butylcalix[4]arene is the best carrier of calcium ion, compared with p-tert-calix[4]arene(n = 4, 6, 8). The ptert-butylcalix[4]arene acid is better than p-tert-butylcalix [4]arene. The calixr43crown is the best carrier of calcium ions of all the carriers. The pH gradient between the source and receiving phase, and the concentration of K^+ , Ca^2+ ions in the source phase affect mainly transport. After the transport, the pH value of the source phase is found to be decreased, once the calix [n ] arene derivatives act as carrier. But it is not the case for the calix[n] crowns. It might be interpreted as the result of their different mechanisms.
文摘Carbon dioxide(CO_(2))capture by gas-separation membranes has become increasingly attractive due to its high energy efficiency,relatively low cost,and environmental impact.Polyvinylamine(PVAm)-based facilitated transport(FT)membranes were developed in the last decade for CO_(2) capture.This work discusses the challenges of applying PVAm-based FT membranes from materials to processes for postcombustion CO_(2) capture in power plants and cement factories.Experiences learned from a pilot demonstration system can be used to guide the design of other membranes for CO_(2) capture.The importance of module and process design is emphasized in the achievement of a high-performance membrane system.Moreover,the results from process simulation and cost estimation indicate that a three-stage membrane system is feasible for achieving a high CO_(2) purity of 95 vol%.The specific CO_(2) capture cost was found to significantly depend on the required CO_(2) capture ratio,and a moderate CO_(2) capture ratio of 50%presented a cost of 63.7USD per tonne CO_(2) captured.Thus,FT membrane systems were found to be more competitive for partial CO_(2) capture.
基金supported by the National Natural Science Foundation of China(No.21473177,No.21633007)the National Key Research and Development Program of China(No.2017YFA0303500 and No.2018YFA0208700)+1 种基金Fundamental Research Funds for the Central Universities(No.WK2340000064)Anhui Initiative in Quantum Information Technologies(No.AHY090000)
文摘Characterization of conformation kinetics of proteins at the interfaces is crucial for understanding the biornolecular functions and the mechanisms of interfacial biological action. But it requires to capture the dynamic structures of proteins at the interfaces with suffi- cient structural and temporal resolutions. Here, we demonstrate that a ferntosecond sum frequency generation vibrational spectroscopy (SFG-VS) system developed by our group provides a powerful tool for monitoring the real-tirne peptide transport across the membranes with time resolution of less than one second. By probing the real-time SFG signals in the arnide I and arnide A bands as WALP23 interacts with DMPG lipid bilayer, it is found that WALP23 is initially absorbed at the gel-phase DMPG bilayer with a random coil structure. The absorption of WALP23 on the surface leads to the surface charge reversal and thus changes the orientation of rnembrane-bound water. As the DMPG bilayer changes from gel phase into fluid phase, WALP23 inserts into the fluid-phase bilayer with its N-terminal end moving across the membrane, which causes the membrane dehydration and the transition of WALP23 conformation from random coil to mixed helix/loop structure and then to pure α-helical structure. The established system is ready to be employed in characterizing other interracial fast processes, which will be certainly helpful for providing a clear physical picture of the interracial phenomena.
基金foundations from Chinese Academy of Sciences and Special Funds for Major State Basic reseaxch of China (G1999053903).
文摘GABA transporter 1(GAT1) takes important roles in multiple physiological processes through the uptake and release of GABA, but the regulation of GAT1 gene expression in different tissues is rarely known. To address the question, first, 5’ Rapid amplification of cDNA end (RACE) was used to determine GAT1 transcriptional starting sites in neonatal mouse cerebral cortex and intestine, adult mouse brain and adult rat testis. The products of 5’RACE were confirmed by DNA sequencing. We found that the transcript of GAT1 in neonatal mouse cerebral cortex and adult mouse brain starts at the same site (inside of exon 1), while in mouse intestine, GAT1 starts transcription in intron 1, and in rat testis, the transcript of GAT1 has an additional untranslation exon to the 5’ direction.
文摘The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.
基金Science Foundation of Anhui University of Technology and Science,China(No.2007YQ001)
文摘New polyimide containing calix [4] arene moieties on the polymer backbone was successfully synthesized in N- methy1 - 2 - pyrrolidone (NMP) by polycondensations of 3, 3', 4, 4'- oxydiphthalic anhydride (ODPA) with the diaminocalix[4]arene monomer using 3,3'- dimethy1- 4, 4'- The polyimide prepared is soluble in common solvents, such as NMP, DMAc, DMF and chloroform. The polyimide films obtained have excellent thermal stability and mechanical property. At the same time, the liquid membrane transport of potassium ions by the new polyimide was investigated, which testified that compared to ODPA-DADPM polyimide, the polyimide containing culix[4] arenes has the transport ability to metal ions in regard to bulky, cone-like calix [-4] arene moieties.
基金funded by the Key-Area Research and Development Program of Guangdong Province(2020B020219004)the IndoAustralian Biotechnology Fund(BT/Indo-Aus/09/03/2015)provided by the Department of Biotechnology,Government of India+2 种基金the AISRF48490 Grant by the Department of Industry,Innovation and Science,Australiathe National Natural Science Foundation of China(31870249)the National Distinguished Expert Project(WQ20174400441)。
文摘Salinity is one of the major abiotic stresses which impose constraints to plant growth and production.Rice(Oryza sativa L.)is one of the most important staple food crops and a model monocot plant.Its production is expanding into regions that are affected by soil salinity,requiring cultivars more tolerant to saline conditions.Understanding the molecular mechanisms of such tolerance could lay a foundation for varietal improvement of salt tolerance in rice.In spite of extensive studies exploring the mechanism of salt tolerance,there has been limited progress in breeding for increased salinity tolerance.In this review,we summarize the information about the major molecular mechanisms underlying salinity tolerance in rice and further discuss the limitations in breeding for salinity tolerance.We show that numerous gene families and interaction networks are involved in the regulation of rice responses to salinity,prompting a need for a comprehensive functional analysis.We also show that most studies are based on whole-plant level analyses with only a few reports focused on tissue-and/or cell-specific gene expression.More details of salt-responsive channel and transporter activities at tissue-and cell-specific level still need to be documented before these traits can be incorporated into elite rice germplasm.Thus,future studies should focus on diversity of available genetic resources and,particular,wild rice relatives,to reincorporate salinity tolerance traits lost during domestication.
文摘A fundamental problem for cells with their fragile membranes is the control of their volume.The primordial solution to this problem is the active transport of ions across the cell membrane to modulate the intracellular osmotic pressure.In this work,a theoretical model of the cellular pump-leak mechanism is proposed within the general framework of linear nonequilibrium thermodynamics.The model is expressed with phenomenological equations that describe passive and active ionic transport across cell membranes,supplemented by an equation for the membrane potential that accounts for the electrogenicity of the ionic pumps.For active ionic transport,the model predicts that the intracellular fluid pressure will be balanced by the osmotic pressure and a new pressure component that arises from the active ionic fluxes.A model for the pump-leak mechanism in an idealized human cell is introduced to demonstrate the applicability of the proposed theory.
基金ThisworkwassupportedbytheKeyProjectofClinicalScienceoftheHealthyMinistryofChina (No 970 3 0 2 2 5 )
文摘OBJECTIVE: To investigate the distribution, changes and a possible role for retinal dopamine transporter (DAT) in experimental myopia in chickens. METHODS: Two-day-old chickens were divided into four groups. Chicken eyes were fitted with lenses of -10D,-20D and translucent goggles unilaterally. Normal eyes were used as controls. After 3 wk, all chickens were given an intramuscular injection of (125)I-beta-CIT 2beta-carbomethoxy-3beta-(4-iodophenyl)tropane and sacrificed two hours post injection. Retinal pigment epithelium (RPE) and the neural retina were obtained together or RPE was dissected out from the neural retina. Radioactive DAT from each specimen was assayed by gamma-counter. RESULTS: Retinal DAT was detected in RPE specimens rather than in the neural retina in all eyes. Radioactive DAT in myopic eyes was higher, compared with control eyes. CONCLUSIONS: Retinal DAT is mainly located in the RPE and may be involved in the formation of lens induced myopia (LIM) and form deprivation myopia (FDM). These methods may provide a new approach for further studying the role of the dopamine system in experimental myopia.
基金the financial support from the National Basic Research Program of China("973 Program",No. 2012CB215404)the National Natural Science Foundation of China(No.51261120378)the State Key Laboratory of Coal Resources and Safe Mining(No.2013CRSMZZ01)
文摘In this work, a dual-phase material consisting Gd0.1Ce0.9O2-δ (GDC, 60 wt%) was synthesized. of La0.7Ca0.3Cr0.95Zn0.05O3-δ (LCCZ, 40 wt%) and Properties including phase structure, sintering behavior, electrical conductivity and oxygen permeability for LCCZ-GDC were evaluated. The results show that dense LCCZ-GDC dual-phase disks were obtained at the sintering temperature of 1250, 1300, 1350 and 1400 ℃ by tape casting and high temperature sintering method. The grain sizes of both GDC and LCCZ grew up with the increasing of sintering temperature. The average grain size of GDC was about 0.5, 0.8, 1.4, 1.8 μm while the average grain size of LCCZ was about 0.8, 1.5, 1.8 and 2 pm after sintering at 1250, 1300, 1350 and 1400℃, respectively. Oxygen flux of LCCZ-GDC decreased with the increase of sintering temperature from 1250 to 1400 ℃. The oxygen flux of LCCZ-GDC sintered at 1250 ℃ reached 0.079 mL/min/cm2 at 975℃ with a membrane thickness of 800 μm. Dual-phase material of LCCZ-GDC will be a promising oxygen transport membrane material for its low sintering temperature and good microstructure.
基金supported by the National Natural Science Foundation of China (51177138)the Specialized Research Fund for the Doctoral Program of Higher Education (20100184110015)+3 种基金the International Science and Technology Cooperation and Exchange Research Plan of Sichuan Province (2012HH0007)the Science and Technology Development Plan of Ministry of Railways (2012J012-D)the Fundamental Research Funds for the Central Universities (SWJTU11CX030)the Specialized Research Fund for the Doctoral Program of Higher Education (20120184120011)
文摘In the face of growing environmental pollution, developing a fuel-cell-driven shunting locomotive is a great challenge in China for environmental protection and energy saving, which combines the environmental advantages of an electric locomotive with the lower infrastructure costs of a diesel-electric locomotive. In this paper, the investigation status and the development trend of the fuel-cell-driven shunting locomotive were introduced. Through innovation of the power system using fuel cells, an experiment prototype of a fuel-cell shunting locomotive was developed, which would reduce the effects on the environment of the existing locomotives. This was the first locomotive to use a proton exchange membrane fuel-cell (PEMFC) power plant in China. From October 2012, we started to test the fuel-cell power plant and further test runs on the test rail-line in Chengdu, Sichuan. The achieved encouraging results can provide fundamental data for the modification of the current individual fuel cell locomotives or further development of the fuel-cell hybrid ones in China.
基金Acknowledgements This research is supported by Innovative Research Team of Xi'an University of Architecture and Technology the National Natural Science Foundation of China (Grant Nos. 51178378 and 51278408) and the Youth Science Foundation Project (No. 21607118).
文摘In the present paper, a polymer inclusion membrane (PIM) containing polyvinyl chloride (PVC), and bis-(2-ethylhexyl) phosphate (D2EHPA) which was used as extracting agent was used for the recovery of In(Ⅲ) ions in hydrochloric acid medium. The effects of carrier concentration, feed phase pH, strip phase HCI concentration, temperature on the transport, and the membrane's stability and thickness were examined. And the conditions for the selective separation of In(Ⅲ) and CU(Ⅱ) were optimized. The results showed that the transport of In(Ⅲ) across PIM was consistent with the first order kinetics equation, and also it was controlled by both the diffusion of the metal complex in the membrane and the chemical reaction at the interface of the boundary layers. The transport flux (J0) was inversely proportional to the membrane thickness, however, the transport stability improved as the membrane thickness increased. The transport flux of In(Ⅲ) and CU(Ⅱ) was decreased by excessive acidity of feed phase and high concentration of Cl^- . The selectivity separation coefficient of In(Ⅲ)/Cu(Ⅱ) was up to 34.33 when the original concentration of both In(Ⅲ) and Cu(Ⅱ) was 80 mg· L^ -1 as well as the pH of the feed phase and the concentration of Cl^- in the adjusting context were 0.6 and 0.5 mol· L^-1, respectively. Within the range of pH = 1-3, the separation selectivity of In(Ⅲ)/Cu(Ⅱ) reached the peak in the case when the Cl^- concentration was 0.7 mol·L^ -1.
文摘In this work, we studied two copolymers formed by segments of a rubbery polyether(PPO or PEO) and of a glassy polyimide(BPDA-ODA or BKDA-ODA) suitable for gas separation and CO2 capture. Firstly, we assessed the absorption of water vapor in the materials, as a function of relative humidity(R.H.), finding that the humidity uptake of the copolymers lies between that of the corresponding pure homopolymers values.Furthermore, we studied the effect of humidity on CO2 and N2 permeability, as well as on CO2/N2 selectivity, up to R.H. of 75%. The permeability decreases with increasing humidity, while the ideal selectivity remains approximately constant in the entire range of water activity investigated. The humidity-induced decrease of permeability in the copolymers is much smaller than the one observed in polyimides such as Matrimid? confirming the positive effect of the polyether phase on the membrane performance.Finally, we modeled the humidity-induced decrease of gas solubility, diffusivity and, consequently, permeability, using a suitable approach that considers the free volume theory for diffusion and LF model for solubility. Such model allows estimating the extent of competition that the gases undergo with water during sorption in the membranes, as a function of the relative humidity, as well as the expected reduction of free volume by means of water molecules occupation and consequent reduction of diffusivity.
文摘Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many levels, ranging from organelles to the whole plant. Many family members are essential for cellular homeostasis and reproductive success. Although most transporters do not directly participate in long-distance transport, their indirect roles greatly impact carbon allocation and transport flux to the heterotrophic tissues of the plant. Functional characterization of some members from both gene families has revealed their diverse roles in carbohydrate partitioning, phloem function, resource allocation, plant defense, and sugar signaling. This review highlights the broad impacts and implications of monosaccharide transport by describing some of the functional roles of the monosaccharide transporter(-like) superfamily and the SWEET transporter family.
基金Project supported by the National Natural Science Foundation of China (No. 20471035) and the Natural Science Foundation of Shaanxi Province (No. 20041317).
文摘The erythrocyte hemolysis was examined to assure Rb^+ to have a weak toxicity toward human body. The way of Rb^+ transporting into human erythrocytes was determined, and the factors to affect this transport process were evaluated. The effects of extracellular concentration of Rb^+, incubation temperature, incubation time, medium pH, and specific inhibitors were investigated via flame atomic absorption spectrometry. The results indicated that the membrane transport of Rb^+ through human erythrocytes was controlled mainly by both active transport and simple diffusion. Every mentioned factor took a positive effect on the Rb^+ uptake by human erythrocytes, however neither DIDS nor nefidpine could inhibit the uptake of Rb^+.