The degree of numerical linear independence is proposed and discussed. Based on this linear independence theory, a modified limited memory BFGS method is deve loped. Similar to the standard limited memory method, thi...The degree of numerical linear independence is proposed and discussed. Based on this linear independence theory, a modified limited memory BFGS method is deve loped. Similar to the standard limited memory method, this new method determines the new update by applying the updating formula m times to an initial positive diagonal matrix using the m previous pairs of the change in iteration and gradient. Besides the most recent pair of the change, which guarantees the quadratic termination, the choice of the other ( m -1) pairs of the change in the new method is dependent on the degree of numerical linear independence of previous search directions. In addition, the numerical linear independence theory is further discussed and the computation of the degree of linear independence is simplified. Theoretical and numerical results show that this new modified method improves efficiently the standard limited memory method.展开更多
In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the He...In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and overthrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method.展开更多
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s...In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.展开更多
In this paper, we propose an algorithm for solving nonlinear monotone equations by combining the limited memory BFGS method (L-BFGS) with a projection method. We show that the method is globally convergent if the eq...In this paper, we propose an algorithm for solving nonlinear monotone equations by combining the limited memory BFGS method (L-BFGS) with a projection method. We show that the method is globally convergent if the equation involves a Lipschitz continuous monotone function. We also present some preliminary numerical results.展开更多
This work is intended to solve the least squares semidefinite program with a banded structure. A limited memory BFGS method is presented to solve this structured program of high dimension.In the algorithm, the inverse...This work is intended to solve the least squares semidefinite program with a banded structure. A limited memory BFGS method is presented to solve this structured program of high dimension.In the algorithm, the inverse power iteration and orthogonal iteration are employed to calculate partial eigenvectors instead of full decomposition of n × n matrices. One key feature of the algorithm is that it is proved to be globally convergent under inexact gradient information. Preliminary numerical results indicate that the proposed algorithm is comparable with the inexact smoothing Newton method on some large instances of the structured problem.展开更多
In this paper, a modified limited memory BFGS method for solving large-scale unconstrained optimization problems is proposed. A remarkable feature of the proposed method is that it possesses global convergence propert...In this paper, a modified limited memory BFGS method for solving large-scale unconstrained optimization problems is proposed. A remarkable feature of the proposed method is that it possesses global convergence property without convexity assumption on the objective function. Under some suitable conditions, the global convergence of the proposed method is proved. Some numerical results are reported which illustrate that the proposed method is efficient.展开更多
Schubert's method for solving systems of sparse equations has achieved a great deal of computational success. In this paper, Schubert's method was extended to multiple version, and the compact representation o...Schubert's method for solving systems of sparse equations has achieved a great deal of computational success. In this paper, Schubert's method was extended to multiple version, and the compact representation of multple Schubert's updating matrix was derived. The compact representation could be used to efficiently implement limited memory methods for large problems.展开更多
Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weig...Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization(EM) and the Markov Chain Monte Carlo(MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the addi-tional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA(referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algo-rithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is al-most equivalent to that for EM.展开更多
文摘The degree of numerical linear independence is proposed and discussed. Based on this linear independence theory, a modified limited memory BFGS method is deve loped. Similar to the standard limited memory method, this new method determines the new update by applying the updating formula m times to an initial positive diagonal matrix using the m previous pairs of the change in iteration and gradient. Besides the most recent pair of the change, which guarantees the quadratic termination, the choice of the other ( m -1) pairs of the change in the new method is dependent on the degree of numerical linear independence of previous search directions. In addition, the numerical linear independence theory is further discussed and the computation of the degree of linear independence is simplified. Theoretical and numerical results show that this new modified method improves efficiently the standard limited memory method.
基金financially supported by the National Important and Special Project on Science and Technology(2011ZX05005-005-007HZ)the National Natural Science Foundation of China(No.41274116)
文摘In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and overthrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method.
基金Supported by the National Natural Science Foundation of China (No.60421002) and the New Century 151 Talent Project of Zhejiang Province.
文摘In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.
基金Support by NSF of China grant 10471036a 973 project
文摘In this paper, we propose an algorithm for solving nonlinear monotone equations by combining the limited memory BFGS method (L-BFGS) with a projection method. We show that the method is globally convergent if the equation involves a Lipschitz continuous monotone function. We also present some preliminary numerical results.
基金supported by the National Natural Science Foundation of China under Grant No.11601318。
文摘This work is intended to solve the least squares semidefinite program with a banded structure. A limited memory BFGS method is presented to solve this structured program of high dimension.In the algorithm, the inverse power iteration and orthogonal iteration are employed to calculate partial eigenvectors instead of full decomposition of n × n matrices. One key feature of the algorithm is that it is proved to be globally convergent under inexact gradient information. Preliminary numerical results indicate that the proposed algorithm is comparable with the inexact smoothing Newton method on some large instances of the structured problem.
基金Supported by National Natural Science Foundation of China(Grant11001075,11161003)Post-doctoral Foundation of China grant 20090461094the Natural Science Foundation of Henan Province Eduction Department grant 2010B110004
文摘In this paper, a modified limited memory BFGS method for solving large-scale unconstrained optimization problems is proposed. A remarkable feature of the proposed method is that it possesses global convergence property without convexity assumption on the objective function. Under some suitable conditions, the global convergence of the proposed method is proved. Some numerical results are reported which illustrate that the proposed method is efficient.
文摘Schubert's method for solving systems of sparse equations has achieved a great deal of computational success. In this paper, Schubert's method was extended to multiple version, and the compact representation of multple Schubert's updating matrix was derived. The compact representation could be used to efficiently implement limited memory methods for large problems.
基金supported by National Basic Research Program of China (Grant No. 2010CB428403)National Natural Science Foundation of China (Grant No.41075076)Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-EW-QN207)
文摘Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization(EM) and the Markov Chain Monte Carlo(MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the addi-tional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA(referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algo-rithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is al-most equivalent to that for EM.