Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the...Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the grounded theory,a research framework encompassing“content,technology,and discourse”was established to explore the paths through which mainstream media construct the cultural memory.Regarding content,this paper emphasized temporal and spatial contexts and urban spaces,delving deep into the themes of the cultural memory and vehicles for it.In terms of technology,this paper discussed the practice of leveraging audio/visual-mode discourse to stitch together the impressions of a city and evoke emotional resonance to create a“flow”of memory.As for discourse,this paper looked at the performance of a communication ritual to frame concepts and shape urban identity.It is essential to break free from conventional thinking and leverage local culture as the primary driving force to further boost a city’s productivity,in order to excel in cultural communication.展开更多
In recent papers, Surana et al. presented internal polar non-classical Continuum theory in which velocity gradient tensor in its entirety was incorporated in the conservation and balance laws. Thus, this theory incorp...In recent papers, Surana et al. presented internal polar non-classical Continuum theory in which velocity gradient tensor in its entirety was incorporated in the conservation and balance laws. Thus, this theory incorporated symmetric part of the velocity gradient tensor (as done in classical theories) as well as skew symmetric part representing varying internal rotation rates between material points which when resisted by deforming continua result in dissipation (and/or storage) of mechanical work. This physics referred as internal polar physics is neglected in classical continuum theories but can be quite significant for some materials. In another recent paper Surana et al. presented ordered rate constitutive theories for internal polar non-classical fluent continua without memory derived using deviatoric Cauchy stress tensor and conjugate strain rate tensors of up to orders n and Cauchy moment tensor and its conjugate symmetric part of the first convected derivative of the rotation gradient tensor. In this constitutive theory higher order convected derivatives of the symmetric part of the rotation gradient tensor are assumed not to contribute to dissipation. Secondly, the skew symmetric part of the velocity gradient tensor is used as rotation rates to determine rate of rotation gradient tensor. This is an approximation to true convected time derivatives of the rotation gradient tensor. The resulting constitutive theory: (1) is incomplete as it neglects the second and higher order convected time derivatives of the symmetric part of the rotation gradient tensor;(2) first convected derivative of the symmetric part of the rotation gradient tensor as used by Surana et al. is only approximate;(3) has inconsistent treatment of dissipation due to Cauchy moment tensor when compared with the dissipation mechanism due to deviatoric part of symmetric Cauchy stress tensor in which convected time derivatives of up to order n are considered in the theory. The purpose of this paper is to present ordered rate constitutive theories for deviatoric Cauchy strain tensor, moment tensor and heat vector for thermofluids without memory in which convected time derivatives of strain tensors up to order n are conjugate with the Cauchy stress tensor and the convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n are conjugate with the moment tensor. Conservation and balance laws are used to determine the choice of dependent variables in the constitutive theories: Helmholtz free energy density Φ, entropy density η, Cauchy stress tensor, moment tensor and heat vector. Stress tensor is decomposed into symmetric and skew symmetric parts and the symmetric part of the stress tensor and the moment tensor are further decomposed into equilibrium and deviatoric tensors. It is established through conjugate pairs in entropy inequality that the constitutive theories only need to be derived for symmetric stress tensor, moment tensor and heat vector. Density in the current configuration, convected time derivatives of the strain tensor up to order n, convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n, temperature gradient tensor and temperature are considered as argument tensors of all dependent variables in the constitutive theories based on entropy inequality and principle of equipresence. The constitutive theories are derived in contravariant and covariant bases as well as using Jaumann rates. The nth and 1nth order rate constitutive theories for internal polar non-classical thermofluids without memory are specialized for n = 1 and 1n = 1 to demonstrate fundamental differences in the constitutive theories presented here and those used presently for classical thermofluids without memory and those published by Surana et al. for internal polar non-classical incompressible thermofluids.展开更多
The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and t...The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and the control parameters being functions of the stress and the temperature. A two constant model is found to be preferred to a four constant model.展开更多
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ...This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.展开更多
文摘Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the grounded theory,a research framework encompassing“content,technology,and discourse”was established to explore the paths through which mainstream media construct the cultural memory.Regarding content,this paper emphasized temporal and spatial contexts and urban spaces,delving deep into the themes of the cultural memory and vehicles for it.In terms of technology,this paper discussed the practice of leveraging audio/visual-mode discourse to stitch together the impressions of a city and evoke emotional resonance to create a“flow”of memory.As for discourse,this paper looked at the performance of a communication ritual to frame concepts and shape urban identity.It is essential to break free from conventional thinking and leverage local culture as the primary driving force to further boost a city’s productivity,in order to excel in cultural communication.
文摘In recent papers, Surana et al. presented internal polar non-classical Continuum theory in which velocity gradient tensor in its entirety was incorporated in the conservation and balance laws. Thus, this theory incorporated symmetric part of the velocity gradient tensor (as done in classical theories) as well as skew symmetric part representing varying internal rotation rates between material points which when resisted by deforming continua result in dissipation (and/or storage) of mechanical work. This physics referred as internal polar physics is neglected in classical continuum theories but can be quite significant for some materials. In another recent paper Surana et al. presented ordered rate constitutive theories for internal polar non-classical fluent continua without memory derived using deviatoric Cauchy stress tensor and conjugate strain rate tensors of up to orders n and Cauchy moment tensor and its conjugate symmetric part of the first convected derivative of the rotation gradient tensor. In this constitutive theory higher order convected derivatives of the symmetric part of the rotation gradient tensor are assumed not to contribute to dissipation. Secondly, the skew symmetric part of the velocity gradient tensor is used as rotation rates to determine rate of rotation gradient tensor. This is an approximation to true convected time derivatives of the rotation gradient tensor. The resulting constitutive theory: (1) is incomplete as it neglects the second and higher order convected time derivatives of the symmetric part of the rotation gradient tensor;(2) first convected derivative of the symmetric part of the rotation gradient tensor as used by Surana et al. is only approximate;(3) has inconsistent treatment of dissipation due to Cauchy moment tensor when compared with the dissipation mechanism due to deviatoric part of symmetric Cauchy stress tensor in which convected time derivatives of up to order n are considered in the theory. The purpose of this paper is to present ordered rate constitutive theories for deviatoric Cauchy strain tensor, moment tensor and heat vector for thermofluids without memory in which convected time derivatives of strain tensors up to order n are conjugate with the Cauchy stress tensor and the convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n are conjugate with the moment tensor. Conservation and balance laws are used to determine the choice of dependent variables in the constitutive theories: Helmholtz free energy density Φ, entropy density η, Cauchy stress tensor, moment tensor and heat vector. Stress tensor is decomposed into symmetric and skew symmetric parts and the symmetric part of the stress tensor and the moment tensor are further decomposed into equilibrium and deviatoric tensors. It is established through conjugate pairs in entropy inequality that the constitutive theories only need to be derived for symmetric stress tensor, moment tensor and heat vector. Density in the current configuration, convected time derivatives of the strain tensor up to order n, convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n, temperature gradient tensor and temperature are considered as argument tensors of all dependent variables in the constitutive theories based on entropy inequality and principle of equipresence. The constitutive theories are derived in contravariant and covariant bases as well as using Jaumann rates. The nth and 1nth order rate constitutive theories for internal polar non-classical thermofluids without memory are specialized for n = 1 and 1n = 1 to demonstrate fundamental differences in the constitutive theories presented here and those used presently for classical thermofluids without memory and those published by Surana et al. for internal polar non-classical incompressible thermofluids.
文摘The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and the control parameters being functions of the stress and the temperature. A two constant model is found to be preferred to a four constant model.
基金partial financial support from the National Natural Science Foundation of China (No. 52101231)the Science Fund of Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing,China (No. AMGM2021F09)the Natural Science Foundation of Shandong Province,China (No. ZR2021QE044)。
文摘This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.