Based on the charge storage mode,it is important to investigate the scaling dependence of memory performance in silicon nanocrystal(Si-NC) nonvolatile memory(NVM) devices for its scaling down limit.In this work,we...Based on the charge storage mode,it is important to investigate the scaling dependence of memory performance in silicon nanocrystal(Si-NC) nonvolatile memory(NVM) devices for its scaling down limit.In this work,we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor(CMOS) technology.It is found that the memory windows of eight kinds of test key cells are almost the same of about1.64 V @ ±7 V/1 ms,which are independent of the gate area,but mainly determined by the average size(12 nm) and areal density(1.8×10^(11)/cm^2) of Si-NCs.The program/erase(P/E) speed characteristics are almost independent of gate widths and lengths.However,the erase speed is faster than the program speed of test key cells,which is due to the different charging behaviors between electrons and holes during the operation processes.Furthermore,the data retention characteristic is also independent of the gate area.Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration.展开更多
In the present study, we compared explicit memory performance, using the Wechsler Memory Scale and implicit memory performance, using the Nissen software version of the serial reaction time task, in patients with Wil...In the present study, we compared explicit memory performance, using the Wechsler Memory Scale and implicit memory performance, using the Nissen software version of the serial reaction time task, in patients with Wilson's disease to normal controls. The Wilson's disease patients exhibited deficits in explicit memory tasks, such as figure recall and understanding memory. Moreover, the Wilson's disease patients exhibited deficits in implicit memory tasks, including significantly prolonged response times. These findings indicate that Wilson's disease patients have explicit and implicit partial memory impairments.展开更多
The fornix,which connects the medial temporal lobe and the medial diencephalon,is involved in episodic memory as an important part of the Papez circuit.The mechanisms of recovery of an injured fornix revealed by diffu...The fornix,which connects the medial temporal lobe and the medial diencephalon,is involved in episodic memory as an important part of the Papez circuit.The mechanisms of recovery of an injured fornix revealed by diffusion tensor tractography in the five studies are summarized as follows:1) recovery through the nerve tract from an injured fornical crus to the medial temporal lobe via the normal pathway of the fornical crus;2)recovery through the nerve tract originating from an ipsi-lesional fornical body connected to the ipsi-lesional medial temporal lobe via the splenium of the corpus callosum;3) recovery through the nerve tract from the ipsi-lesional fornical body extending to the contra-lesional medial temporal lobe via the splenium of the corpus callosum;4) recovery through the nerve tract originating from the ipsi-lesional fornical column connected to the ipsi-lesional medial temporal lobe;and 5) recovery through the nerve tract originating from the contra-lesional fornical column connected to the ipsi-lesional medial temporal lobe via the contra-lesional medial temporal lobe and the splenium of the corpus callosum.These diffusion tensor tractography studies on mechanisms of recovery of injured fornical crus appeared to provide useful information for clinicians caring for patients with brain injury,however,studies on this topic are still in the beginning stages.展开更多
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2010CB934402)the National Natural Science Foundation of China(Grant Nos.11374153,61571221,and 61071008)
文摘Based on the charge storage mode,it is important to investigate the scaling dependence of memory performance in silicon nanocrystal(Si-NC) nonvolatile memory(NVM) devices for its scaling down limit.In this work,we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor(CMOS) technology.It is found that the memory windows of eight kinds of test key cells are almost the same of about1.64 V @ ±7 V/1 ms,which are independent of the gate area,but mainly determined by the average size(12 nm) and areal density(1.8×10^(11)/cm^2) of Si-NCs.The program/erase(P/E) speed characteristics are almost independent of gate widths and lengths.However,the erase speed is faster than the program speed of test key cells,which is due to the different charging behaviors between electrons and holes during the operation processes.Furthermore,the data retention characteristic is also independent of the gate area.Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration.
基金the National Natural Science Foundation of China, No. 81071065/H0914
文摘In the present study, we compared explicit memory performance, using the Wechsler Memory Scale and implicit memory performance, using the Nissen software version of the serial reaction time task, in patients with Wilson's disease to normal controls. The Wilson's disease patients exhibited deficits in explicit memory tasks, such as figure recall and understanding memory. Moreover, the Wilson's disease patients exhibited deficits in implicit memory tasks, including significantly prolonged response times. These findings indicate that Wilson's disease patients have explicit and implicit partial memory impairments.
基金supported by the National Research Foundation(NRF)of Korea Grant funded by the Korean Government(MSIP)(2015R1A2A2A01004073)
文摘The fornix,which connects the medial temporal lobe and the medial diencephalon,is involved in episodic memory as an important part of the Papez circuit.The mechanisms of recovery of an injured fornix revealed by diffusion tensor tractography in the five studies are summarized as follows:1) recovery through the nerve tract from an injured fornical crus to the medial temporal lobe via the normal pathway of the fornical crus;2)recovery through the nerve tract originating from an ipsi-lesional fornical body connected to the ipsi-lesional medial temporal lobe via the splenium of the corpus callosum;3) recovery through the nerve tract from the ipsi-lesional fornical body extending to the contra-lesional medial temporal lobe via the splenium of the corpus callosum;4) recovery through the nerve tract originating from the ipsi-lesional fornical column connected to the ipsi-lesional medial temporal lobe;and 5) recovery through the nerve tract originating from the contra-lesional fornical column connected to the ipsi-lesional medial temporal lobe via the contra-lesional medial temporal lobe and the splenium of the corpus callosum.These diffusion tensor tractography studies on mechanisms of recovery of injured fornical crus appeared to provide useful information for clinicians caring for patients with brain injury,however,studies on this topic are still in the beginning stages.