期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer's disease mice 被引量:16
1
作者 Yufang Yan Tuo Ma +3 位作者 Kai Gong Qiang Ao Xiufang Zhang Yao Gong 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第8期798-805,共8页
In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer's disease model mice. Immunofluorescence staining revealed that the number of newly ge... In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer's disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer's disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer's disease mice, thereby facilitating functional recovery. 展开更多
关键词 nerve regeneration stem cells Alzheimer's disease adipose-derived mesenchymal stemcells cell transplantation cognitive impairment oxidative stress NEUROGENESIS 863 Program neuralregeneration
下载PDF
Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells 被引量:22
2
作者 Song Chen Wei Zhang +6 位作者 Ji-Ming Wang Hong-Tao Duan Jia-Hui Kong Yue-Xin Wang Meng Dong Xue Bi Jian Song 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2016年第1期41-47,共7页
AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with the... AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee.UC-MSC were isolated by adherent culture in the medium contains 20%fetal bovine serum(FBS),then they were maintained in the medium contain 10%FBS and induced to neural cells in neural differentiation medium.We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron by using flow cytometry,reverse transcriptase-polymerase chain reaction(RT-PCR)and immunofluorescence(IF)analyzes.·R ESULTS:A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk.Flow cytometric study revealed that these cells expressed common markers of MSCs,such as CD105(SH2),CD73(SH3)and CD90.After induction of differentiation of neural stem cells,the cells began to form clusters;RT-PCR and IF showed that the neuron specific enolase(NSE)and neurogenic differentiation 1-positive cells reached 87.3%±14.7%and 72.6%±11.8%,respectively.Cells showed neuronal cell differentiation after induced,including neuron-like protrusions,plump cell body,obviously and stronger refraction.RT-PCR and IF analysis showed that microtubule-associated protein 2(MAP2)and nuclear factor-M-positive cells reached 43.1%±10.3%and 69.4%±19.5%,respectively.·CONCLUSION:Human umbilical cord derived MSCs can be cultured and proliferated and differentiate into neural stem cells,which may be a valuable source for cell therapy of neurodegenerative eye diseases. 展开更多
关键词 human umbilical cord mesenchymal stemcells neural stem cells NEURON neurodegenerative eye diseases
下载PDF
Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells 被引量:12
3
作者 Peng Deng Qian-Ming Chen +1 位作者 Christine Hong Cun-Yu Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第4期197-204,共8页
Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-ba... Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containine KMTs and JmiC domain-containinlz KDMs balance the osteogenic and adipogenic differentiation of MSCs. 展开更多
关键词 ADIPOGENESIS histone methylation histone lysine methyltransferase histone lysine demethylase mesenchymal stemcells osteogenesis
下载PDF
Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells 被引量:6
4
作者 Yan-ru Zhang Ka Ka +4 位作者 Ge-chen Zhang Hui Zhang Yan Shang Guo-qiang Zhao Wen-hua Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1498-1506,共9页
Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic fac- tor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciat... Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic fac- tor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neuro- trophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve fibers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when al- lografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and cili- ary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury. 展开更多
关键词 nerve regeneration peripheral nerve injury brain-derived neurotrophic factor ciliaryneurotrophic factor chemically extracted acellular nerve allografis bone marrow mesenchymal stemcells peripheral nerve neural regeneration
下载PDF
Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum 被引量:3
5
作者 Yue Huang Cheng Chang +1 位作者 Jiewen Zhang Xiaoqun Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第34期2653-2662,共10页
Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson's disease significantly improved behavior and increased striatal dopamine content. In the prese... Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson's disease significantly improved behavior and increased striatal dopamine content. In the present study, we transplanted tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells into the damaged striatum of Parkinson's disease model rats. Several weeks after cell transplantation, in addition to an improvement of motor function tyrosine hydroxylase and neurturin proteins were up-regulated in the injured striatum, and importantly, levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid increased significantly. Furthermore, the density of the D2 dopamine receptor in the postsynaptic membranes of dopaminergic neurons was decreased. These results indicate that transplantation of tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells increases dopamine synthesis and significantly improves the behavior of rats with Parkinson's disease. 展开更多
关键词 Parkinson's disease tyrosine hydroxylase NEURTURIN bone marrow-derived mesenchymal stemcells transplantation dopamine gene therapy neurodegenerative disease regeneration neural
下载PDF
Differentiation of human olfactory mucosa mesenchymal stem cells into photoreceptor cells in vitro 被引量:2
6
作者 Wen Lu Da Duan +2 位作者 Zacharia Ackbarkhan Ming Lu Min-Li Huang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第10期1504-1509,共6页
AIM:To investigate whether the human olfactory mucosa mesenchymal stem cells(OM-MSCs)can differentiate into photoreceptor cells in vitro.METHODS:Through the olfactory mucosa adherent method,olfactory mucosa was is... AIM:To investigate whether the human olfactory mucosa mesenchymal stem cells(OM-MSCs)can differentiate into photoreceptor cells in vitro.METHODS:Through the olfactory mucosa adherent method,olfactory mucosa was isolated,cultured and identified in vitro among mesenchymal stem cells.The cell surface markers were analyzed by flow cytometry,induced to differentiate into retinal photoreceptor cells in vitro,and the expression of rhodopsin was observed and identified by Immunofluorescence and Western blot methods.RESULTS:OM-MSCs from human were spindle cellbased,and showing radial colony arrangement.OM-MSCs were negative for CD34,CD45 and CD105,but positive for CD73 and CD90.Following induction,a strong positive reaction was produced by photoreceptor specific marker rhodopsin in the cells.CONSLUSION:This novel finding demonstrates that OM-MSCs can be cultured and expanded in vitro.They possess biological characteristics of mesenchymal stem cells,and have the ability to be induced into retinal cells. 展开更多
关键词 human olfactory mucosa mesenchymal stemcells DIFFERENTIATION retinal cells
下载PDF
Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles 被引量:1
7
作者 Victoria Pulido-Escribano Bárbara Torrecillas-Baena +3 位作者 Marta Camacho-Cardenosa Gabriel Dorado MaríaÁngeles Gálvez-Moreno Antonio Casado-Díaz 《World Journal of Stem Cells》 SCIE 2022年第7期453-472,共20页
The use of mesenchymal stem-cells(MSC)in cell therapy has received considerable attention because of their properties.These properties include high expansion and differentiation in vitro,low immunogenicity,and modulat... The use of mesenchymal stem-cells(MSC)in cell therapy has received considerable attention because of their properties.These properties include high expansion and differentiation in vitro,low immunogenicity,and modulation of biological processes,such as inflammation,angiogenesis and hematopoiesis.Curiously,the regenerative effect of MSC is partly due to their paracrine activity.This has prompted numerous studies,to investigate the therapeutic potential of their secretome in general,and specifically their extracellular vesicles(EV).The latter contain proteins,lipids,nucleic acids,and other metabolites,which can cause physiological changes when released into recipient cells.Interestingly,contents of EV can be modulated by preconditioning MSC under different culture conditions.Among them,exposure to hypoxia stands out;these cells respond by activating hypoxia-inducible factor(HIF)at low O_(2) concentrations.HIF has direct and indirect pleiotropic effects,modulating expression of hundreds of genes involved in processes such as inflammation,migration,proliferation,differentiation,angiogenesis,metabolism,and cell apoptosis.Expression of these genes is reflected in the contents of secreted EV.Interestingly,numerous studies show that MSC-derived EV conditioned under hypoxia have a higher regenerative capacity than those obtained under normoxia.In this review,we show the implications of hypoxia responses in relation to tissue regeneration.In addition,hypoxia preconditioning of MSC is being evaluated as a very attractive strategy for isolation of EV,with a high potential for clinical use in regenerative medicine that can be applied to different pathologies. 展开更多
关键词 Cell priming Extracellular vesicles HYPOXIA Hypoxia-inducible factor mesenchymal stemcells Regenerative medicine
下载PDF
Stem cell transplantation for treating Parkinson's disease Literature analysis based on the Web of Science 被引量:3
8
作者 Runhui Li 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第16期1272-1279,共8页
OBJECTIVE: To identify global research trends of stem cell transplantation for treating Parkinson's disease using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis ... OBJECTIVE: To identify global research trends of stem cell transplantation for treating Parkinson's disease using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for stem cell transplantation for treating Parkinson's disease from 2002 to 2011 using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on stem cell transplantation for treating Parkinson's disease which were published and indexed in the Web of Science; (b) type of articles: original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material and news items; (c) year of publication: 2002-2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) we excluded documents that were not published in the public domain; (c) we excluded a number of corrected papers from the total number of articles. MAIN OUTCOME MEASURES: (1) Type of literature; (2) annual publication output; (3) distribution according to journals; (4) distribution according to subject areas; (5) distribution according to country; (6) distribution according to institution; (7) comparison of countries that published the most papers on stem cell transplantation from different cell sources for treating Parkinson's disease; (8) comparison of institutions that published the most papers on stem cell transplantation from different cell sources for treating Parkinson's disease in the Web of Science from 2002 to 2011; (9) comparison of studies on stem cell transplantation from different cell sources for treating Parkinson's disease RESULTS: In total, 1 062 studies on stem cell transplantation for treating Parkinson's disease appeared in the Web of Science from 2002 to 2011, almost one third of which were from American authors and institutes. The number of studies on stem cell transplantation for treating Parkinson's disease had gradually increased over the past 10 years. Papers on stem cell transplantation for treating Parkinson's disease appeared in journals such as Stem Cells and Experimental Neurology. Although the United States published more articles addressing neural stem cell and embryonic stem cell transplantation for treating Parkinson's disease, China ranked first for articles published on bone marrow mesenchymal stem cell transplantation for treating Parkinson's disease. CONCLUSION: From our analysis of the literature and research trends, we found that stem cell transplantation for treating Parkinson's disease may offer further benefits in regenerative medicine. 展开更多
关键词 Parkinson's disease neural stem cells embryonic stem cells bone marrow mesenchymal stemcells cell transplantation bibliometric analysis Web of Science neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部