BACKGROUND:The intestinal lymphatic pathway and intestinal ischemia/reperfusion are mainly involved in mesenteric lymph duct ligation or drainage; moreover,intervention by reducing the lymph liquid reflux might relie...BACKGROUND:The intestinal lymphatic pathway and intestinal ischemia/reperfusion are mainly involved in mesenteric lymph duct ligation or drainage; moreover,intervention by reducing the lymph liquid reflux might relieve lung and other organ dysfunction induced by intestinal ischemia/reperfusion; however,research addressing mesenteric lymph reperfusion (MLR) and brain injury has not yet to be reported.OBJECTIVE:To observe the effect of MLR on brain tissue in a rat model of superior mesenteric artery occlusion (SMAO) shock,and to explore the molecular mechanism of MLR.DESIGN,TIME AND SETTING:A randomized,controlled,animal experiment at a neuro-pathophysiology level was performed at the Institute of Microcirculation,Hebei North University; Department of Pathophysiology,Basic Medical College; Department of Pathology,the First Hospital of Hebei North University between December 2007 and March 2009.MATERIALS:Adenosine triphosphate (ATP) standard was provided by the National Institute for the Control of Pharmaceutical and Biological Products; lactic acid (LA),superoxide dismutase (SOD),malonaldehyde (MDA),nitrogen monoxidum (NO),nitric oxide synthase (NOS),myeloperoxidase (MPO) and ATPase assay kits were provided by Nanjing Jiancheng Bioengineering Institute,China.METHODS:A total of 24 male Wistar rats were randomly divided into four groups.In the sham-surgery group (n = 6),both the mesenteric lymph duct and the superior mesenteric artery were not blocked; in the MLR group (n = 6),the mesenteric lymph duct was occluded for 1 hour followed by 2-hour reperfusion; in the SMAO group (n = 6),the superior mesenteric artery was occluded for 1 hour followed by 2-hour reperfusion; in the MLR + SMAO group (n = 6),both the mesenteric lymph duct and superior mesenteric artery were occluded for 1 hour followed by 2-hour reperfusion.MAIN OUTCOME MEASURES:Mean arterial blood pressure prior to and following ischemia/reperfusion; brain tissue morphology levels of LA,MDA,SOD,NO,NOS,MPO,ATPase and ATP following reperfusion.RESULTS:MLR did not cause changes in mean arterial blood pressure,brain tissue morphology,LA,MDA,NO,ATP,SOD,NOS,MPO and ATPase.However,SMAO caused a rapid decrease and gradual increase of mean arterial blood pressure.Neuronal necrosis,degeneration and swelling were observed in brain tissue.Contents of MDA,NO,LA and ATP as well as activities of NOS and MPO were significantly increased (P〈 0.05),but activities of SOD and Na+-K+-ATPase were significantly decreased (P 〈 0.05).MLR aggravated neuronal damage in a rat model of SMAO shock.Following MLR,mean arterial blood pressure was significantly decreased (P 〈 0.05),contents of MDA and NO as well as activities of NOS and MPO were significantly increased (P 〈0.05),but activities of Ca2+-ATPase,Mg2+-ATPase and Ca2+-Mg2+-ATPase as well as ATP content were significantly decreased (P〈 0.05).CONCLUSION:MLR aggravates brain injury in a rat model of SMAO shock,which correlates with oxygen-derived free radical injury,NO synthesis and release,sequestration of neutrophilic granulocytes,decreasing activity of cell membrane pumps and energy metabolism dysfunction.Pathogenesis of the intestinal lymphatic pathway should be thoroughly investigated to prevent ischemia/reperfusion injury.展开更多
BACKGROUND: Previous studies have shown that mesenteric lymph reperfusion (MLR) exacerbates brain injury in a rat model of superior mesenteric artery occlusion (SMAO) shock. However, little is known about the inf...BACKGROUND: Previous studies have shown that mesenteric lymph reperfusion (MLR) exacerbates brain injury in a rat model of superior mesenteric artery occlusion (SMAO) shock. However, little is known about the influence of MLR on neurotransmitter expression in brain tissue. OBJECTIVE: To observe the effect of MLR on brain tissue injury by measuring monoamine and cholinergic neurotransmitter levels. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Institute of Microcirculation, Hebei North University, China; Research Room of Microcirculation and Laboratory of Biochemistry, Department of Pathophysiology, Basic Medical College, Hebei North University between December 2007 and March 2009. MATERIALS: Choline acetyltransferase (CHAT) and acetylcholine esterase (ACHE) kits were provided by Nanjing Jiancheng Bioengineering Institute, China; dopamine (DA) and noradrenalin (NE) standards were provided by the National Institute for the Control of Pharmaceutical and Biological Products; HP1100 chromatograph of liquid was provided by Agllent, USA. METHODS: A total of 24 male, Wistar rats were randomly assigned to 4 groups: sham-surgery, MLR SMAO, and MLR + SMAO groups, with 6 rats in each group. In the MLR or SMAO groups, the mesenteric lymph duct or superior mesenteric artery was blocked for 1 hour. In the MLR + SMAO group, the mesenteric lymph duct and superior mesenteric artery were occluded for 1 hour, followed by 2-hour repeffusion. ChAT and AChE levels were measured using the synthesized and hydrolyzed acetylcholine method, respectively. Liquid chromatography was employed to quantitatively analyze DA and NE levels, using relative retention time and the external standard method. MAIN OUTCOME MEASURES: CHAT, ACHE, DA, and NE levels. RESULTS: AChE levels were significantly increased, but ChAT levels were significantly decreased in the MLR and MLR + SMAO groups following 2-hour repeffusion (P〈 0.01). However, AChE activity in the MLR + SMAO group was greater than in the MLR group (P 〈 0.05). DA and NE levels were significantly decreased in the SMAO and MLR + SMAO groups (P〈 0.01), while DA levels in the MLR + SMAO group were less than in the SMAO group (P 〈 0.05). CONCLUSION: MLR exacerbated brain injury in a rat model of SMAO shock, which correlated with the intestinal lymphatic pathway. MLR decreased DA levels, but increased AChE activity, in a rat model of SMAO shock.展开更多
Objective The aim of this study was to investigate the ability of Pref-1~+ adipocyte progenitor cells to mobilize into mesenteric lymph nodes(MLNs) and the dynamic expression of related chemokines during the develo...Objective The aim of this study was to investigate the ability of Pref-1~+ adipocyte progenitor cells to mobilize into mesenteric lymph nodes(MLNs) and the dynamic expression of related chemokines during the development of rat MLNs. Methods Immunohistochemical analyses were used to detect the expression of Pref-1 and related chemokines. Transmission electron microscopy(TEM) was used to observe the changes in ultrastructure of MLNs. Results Cells containing lipid droplets were found in all rat MLNs at embryonic day(E) 18.5, 2 and 6 weeks(w) after birth, and they were similar to fibroblastic reticular cells(FRCs) or follicular dendritic cells(FDCs) under TEM. Pref-1~+ adipocyte progenitor cells were found in all MLNs. The expression level of Pref-1 was significantly increased at 2 w after birth and decreased at 6 w after birth. The tendency of Cxcl12 expression was consistent with that of Pref-1 and was positively correlated with the expression of Pref-1(P 〈 0.01; r = 0.897). At E18.5, Cxcl13, and Ccr7 were significantly expressed in the MLN anlage, but the expression level of Ccl21 was low. The expression level of Cxcl13, Ccr7, and Ccl21 in MLN were significantly increased at 2 w after birth(P 〈 0.05), while the expression of Ccr7 and Ccl21 were significantly decreased at 6 w after birth(P 〈 0.05). Conclusion Adipocyte progenitor cells are involved in the rat MLNs development through differentiation into FRC and FDC. The expression of the relevant chemokines during the development of MLNs is dynamic and may be related to the maintenance of lymph nodes self-balance state.展开更多
The purpose of this study was to quantify the effect of the fatty acid alkyl-chain length of a polyethylene glycol(PEG)glyceryl ester,which was used as a microemulsion oil component,on the partitioning of highly lipop...The purpose of this study was to quantify the effect of the fatty acid alkyl-chain length of a polyethylene glycol(PEG)glyceryl ester,which was used as a microemulsion oil component,on the partitioning of highly lipophilic compounds to the mesenteric lymph after oral administration.Oil blue N,a highly lipophilic anthraquinone derivative,was orally administered to lymph duct-cannulated and untreated rats in two kinds of different microemulsions.Gelucire®50/13 and Gelucire®44/14 were used as the oil component with long chain and medium chain fatty acid portions,respectively,of PEG glyceryl esters in microemulsions.The cumulative amount of oil blue N in lymph fluid was almost the same between the two microemulsions,although the transferred amount of oil component(triglyceride)in the lymph after administration of the Gelucire®50/13 microemulsion was significantly higher than that of the Gelucire®44/14 microemulsion.On the other hand,the solubility of oil blue N in Gelucire®44/14 was much higher than that in Gelucire®50/13.No significant differences were observed between microemulsions in the bioavailability of oil blue N.From these data,the partitioning of oil blue N to the lymph was calculated using a mathematical model,showing that the partitioning ratios of oil blue N to the lymph fluid were almost the same for both microemulsions.The solubility of oil blue N to the oil component of the microemulsions and the transfer of triglycerides to the lymph after administration of the microemulsions counteract each other,leading to similar partitioning ratios of oil blue N to the lymph.展开更多
The mesenteric lymph node cavitation syndrome consists of central necrosis of mesenteric lymph nodes and may occur with either celiac disease or a sprue-like intestinal disease that fails to respond to a gluten-free d...The mesenteric lymph node cavitation syndrome consists of central necrosis of mesenteric lymph nodes and may occur with either celiac disease or a sprue-like intestinal disease that fails to respond to a gluten-free diet. Splenic hypofunction may also be present. The cause is not known but its development during the clinical course of celiac disease is usually indicative of a poor prognosis for the intestinal disorder, a potential for signif icant compli-cations including sepsis and malignancy, particularly T-cell lymphoma, and signif icant mortality. Modern abdominal imaging modalities may permit earlier detection in celiac disease so that earlier diagnosis and improved under-standing of its pathogenesis may result.展开更多
The gut-liver axis denotes the intricate connection and interaction between gut microbiome and liver, in which compositional and functional shifts in gut microbiome affect host metabolism. Hepatic portal vein of the b...The gut-liver axis denotes the intricate connection and interaction between gut microbiome and liver, in which compositional and functional shifts in gut microbiome affect host metabolism. Hepatic portal vein of the blood circulation system has been thought to be the major route for metabolite transportation in the gut-liver axis, but the existence and importance of other routes remain elusive. Here, we perform metabolome comparison in blood circulation and mesenteric lymph systems and identify significantly shifted metabolites in serum and mesentery. Using cellular assays, we find that the majority of decreased metabolites in lymph system under high-fat diet are effective in alleviating metabolic disorders, indicating a high potential of lymph system in regulating liver metabolism. Among those, a representative metabolite, L-carnitine, reduces diet-induced obesity in mice. Metabolic tracing analysis identifies that L-carnitine is independently transported by the mesenteric lymph system, serving as an example that lymph circulation comprises a second route in the gut-liver axis to modulate liver metabolism. Our study provides new insights into metabolite transportation via mesenteric lymph system in the gut-liver axis, offers an extended scope for the investigations in host-gut microbiota metabolic interactions and potentially new targets in the treatment of metabolic disorders.展开更多
AIM: To study the effect of blocking intestinal lymphatic circulation in two-hit rats and explore the significance of intestinal lymphatic circulation in two-hit. METHODS: Wistar rats were divided equally into three g...AIM: To study the effect of blocking intestinal lymphatic circulation in two-hit rats and explore the significance of intestinal lymphatic circulation in two-hit. METHODS: Wistar rats were divided equally into three groups: mesenteric lymph duct ligation group, non- ligation group and sham group. Mesenteric lymph was diverted by ligation of mesenteric lymph duct, and the two-hit model was established by hemorrhage and lipopolysaccharide (LPS) methods. All rats were sampled for serum pre-experiment and 24 h post- experiment. The organs including kidney, liver, lung and heart were collected for pathomorphologic observation and biochemical investigation. The nitric oxide (NO), malondialdehyde (MDA) and superoxide dismutase (SOD) were determined in serum and tissue homogenate. RESULTS: Pathomorphology study showed that the structures of kidney, lung, liver and heart tissues were normal in sham group; congestion, degeneration and necrosis in non-ligation group; but only mild lesions in ligation group. After two-hits, the contents of AST, ALT, BUN, Cr and LDH-1 in the serum of non-ligation group and ligation group were obviously higher than that in pre-experiment group and sham group, but obviously lower than that in non-ligation group. The contents of NO2-/NO3-, NOS, iNOS and MDA in the serum of non- ligation group were significantly increased, compared with pre-experiment and sham group, but SOD was significantly lower. These parameters were significantly different in ligation group compared with that in sham group, but NO2-/NO3-, iNOS and MDA in ligation group were significantly lower than that in non-ligation group. CONCLUSION: Ligation of mesenteric lymph duct could improve the disturbance of organic function and morphologic damage in two-hit rats; the lymphatic mechanism in two-hit should be emphasized.展开更多
The immune regulatory effects of probiotics have been widely recognized to be strain-specific.However,it is unknown if there is a species-or genus-dependent manner.In this study,we use an in vitro mesenteric lymph nod...The immune regulatory effects of probiotics have been widely recognized to be strain-specific.However,it is unknown if there is a species-or genus-dependent manner.In this study,we use an in vitro mesenteric lymph node(MLN)model to systematically evaluate the immunostimulatory effects of gut-derived potential probiotics.The results exhibit an obvious species or genus consensus immune response pattern.RNA-seq shows that T cell-dependent B cell activation and antibody responses may be inherent to this model.Of the five tested genera,Akkermansia spp.and Clostridium butyrium directly activate the immune response in vitro,as indicated by the secretion of interleukin-10.Bifidobacterium spp.and Bacteroides spp.activate immune response with the help of stimuli(anti-CD3 and anti-CD28 antibodies).Lactobacillus spp.blunt the immune response with or without stimuli.Further investigations show that the cell surface protein of A.muciniphila AH39,which may serve as a T cell receptor cognate antigen,might evoke an in vitro immune activation.In vivo,oral administration of A.muciniphila AH39 influences the proportion of T regulatory cells(Tregs)in MLNs and the spleen under homeostasis in both specific pathogen-free and germ-free mice.All these findings indicate the distinct effects of different genera or species of potential gut-derived probiotics on intestinal and systemic immunity.展开更多
基金the National Natural Science Foundation of China,No. 30370561,30770845the Natural Science Foundation of Hebei Province,No. C2004000649,C2008000503+1 种基金the Science & Technology Pillar Program of Hebei Province,No. 09276101D-31Science and Technology Program of Zhangjiakou,No. 0711046D-3
文摘BACKGROUND:The intestinal lymphatic pathway and intestinal ischemia/reperfusion are mainly involved in mesenteric lymph duct ligation or drainage; moreover,intervention by reducing the lymph liquid reflux might relieve lung and other organ dysfunction induced by intestinal ischemia/reperfusion; however,research addressing mesenteric lymph reperfusion (MLR) and brain injury has not yet to be reported.OBJECTIVE:To observe the effect of MLR on brain tissue in a rat model of superior mesenteric artery occlusion (SMAO) shock,and to explore the molecular mechanism of MLR.DESIGN,TIME AND SETTING:A randomized,controlled,animal experiment at a neuro-pathophysiology level was performed at the Institute of Microcirculation,Hebei North University; Department of Pathophysiology,Basic Medical College; Department of Pathology,the First Hospital of Hebei North University between December 2007 and March 2009.MATERIALS:Adenosine triphosphate (ATP) standard was provided by the National Institute for the Control of Pharmaceutical and Biological Products; lactic acid (LA),superoxide dismutase (SOD),malonaldehyde (MDA),nitrogen monoxidum (NO),nitric oxide synthase (NOS),myeloperoxidase (MPO) and ATPase assay kits were provided by Nanjing Jiancheng Bioengineering Institute,China.METHODS:A total of 24 male Wistar rats were randomly divided into four groups.In the sham-surgery group (n = 6),both the mesenteric lymph duct and the superior mesenteric artery were not blocked; in the MLR group (n = 6),the mesenteric lymph duct was occluded for 1 hour followed by 2-hour reperfusion; in the SMAO group (n = 6),the superior mesenteric artery was occluded for 1 hour followed by 2-hour reperfusion; in the MLR + SMAO group (n = 6),both the mesenteric lymph duct and superior mesenteric artery were occluded for 1 hour followed by 2-hour reperfusion.MAIN OUTCOME MEASURES:Mean arterial blood pressure prior to and following ischemia/reperfusion; brain tissue morphology levels of LA,MDA,SOD,NO,NOS,MPO,ATPase and ATP following reperfusion.RESULTS:MLR did not cause changes in mean arterial blood pressure,brain tissue morphology,LA,MDA,NO,ATP,SOD,NOS,MPO and ATPase.However,SMAO caused a rapid decrease and gradual increase of mean arterial blood pressure.Neuronal necrosis,degeneration and swelling were observed in brain tissue.Contents of MDA,NO,LA and ATP as well as activities of NOS and MPO were significantly increased (P〈 0.05),but activities of SOD and Na+-K+-ATPase were significantly decreased (P 〈 0.05).MLR aggravated neuronal damage in a rat model of SMAO shock.Following MLR,mean arterial blood pressure was significantly decreased (P 〈 0.05),contents of MDA and NO as well as activities of NOS and MPO were significantly increased (P 〈0.05),but activities of Ca2+-ATPase,Mg2+-ATPase and Ca2+-Mg2+-ATPase as well as ATP content were significantly decreased (P〈 0.05).CONCLUSION:MLR aggravates brain injury in a rat model of SMAO shock,which correlates with oxygen-derived free radical injury,NO synthesis and release,sequestration of neutrophilic granulocytes,decreasing activity of cell membrane pumps and energy metabolism dysfunction.Pathogenesis of the intestinal lymphatic pathway should be thoroughly investigated to prevent ischemia/reperfusion injury.
基金the National Natural Science Foundation of China, No. 30370561, 30770845the Natural Science Foundation of Hebei Province, No. C2004000649, C2008000503+1 种基金the Science & Technology Pillar Program of Hebei Province, No. 09276101D-31Science and Technology Program of Zhangjiakou, No. 0711046D-3
文摘BACKGROUND: Previous studies have shown that mesenteric lymph reperfusion (MLR) exacerbates brain injury in a rat model of superior mesenteric artery occlusion (SMAO) shock. However, little is known about the influence of MLR on neurotransmitter expression in brain tissue. OBJECTIVE: To observe the effect of MLR on brain tissue injury by measuring monoamine and cholinergic neurotransmitter levels. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Institute of Microcirculation, Hebei North University, China; Research Room of Microcirculation and Laboratory of Biochemistry, Department of Pathophysiology, Basic Medical College, Hebei North University between December 2007 and March 2009. MATERIALS: Choline acetyltransferase (CHAT) and acetylcholine esterase (ACHE) kits were provided by Nanjing Jiancheng Bioengineering Institute, China; dopamine (DA) and noradrenalin (NE) standards were provided by the National Institute for the Control of Pharmaceutical and Biological Products; HP1100 chromatograph of liquid was provided by Agllent, USA. METHODS: A total of 24 male, Wistar rats were randomly assigned to 4 groups: sham-surgery, MLR SMAO, and MLR + SMAO groups, with 6 rats in each group. In the MLR or SMAO groups, the mesenteric lymph duct or superior mesenteric artery was blocked for 1 hour. In the MLR + SMAO group, the mesenteric lymph duct and superior mesenteric artery were occluded for 1 hour, followed by 2-hour repeffusion. ChAT and AChE levels were measured using the synthesized and hydrolyzed acetylcholine method, respectively. Liquid chromatography was employed to quantitatively analyze DA and NE levels, using relative retention time and the external standard method. MAIN OUTCOME MEASURES: CHAT, ACHE, DA, and NE levels. RESULTS: AChE levels were significantly increased, but ChAT levels were significantly decreased in the MLR and MLR + SMAO groups following 2-hour repeffusion (P〈 0.01). However, AChE activity in the MLR + SMAO group was greater than in the MLR group (P 〈 0.05). DA and NE levels were significantly decreased in the SMAO and MLR + SMAO groups (P〈 0.01), while DA levels in the MLR + SMAO group were less than in the SMAO group (P 〈 0.05). CONCLUSION: MLR exacerbated brain injury in a rat model of SMAO shock, which correlated with the intestinal lymphatic pathway. MLR decreased DA levels, but increased AChE activity, in a rat model of SMAO shock.
基金supported by the Project of Harbin Science and Technology Bureau of China[No.2017RAQXJ223]Graduate Students’Innovation Research Project of Harbin Medical University[No.YJSCX2017-6HYD]
文摘Objective The aim of this study was to investigate the ability of Pref-1~+ adipocyte progenitor cells to mobilize into mesenteric lymph nodes(MLNs) and the dynamic expression of related chemokines during the development of rat MLNs. Methods Immunohistochemical analyses were used to detect the expression of Pref-1 and related chemokines. Transmission electron microscopy(TEM) was used to observe the changes in ultrastructure of MLNs. Results Cells containing lipid droplets were found in all rat MLNs at embryonic day(E) 18.5, 2 and 6 weeks(w) after birth, and they were similar to fibroblastic reticular cells(FRCs) or follicular dendritic cells(FDCs) under TEM. Pref-1~+ adipocyte progenitor cells were found in all MLNs. The expression level of Pref-1 was significantly increased at 2 w after birth and decreased at 6 w after birth. The tendency of Cxcl12 expression was consistent with that of Pref-1 and was positively correlated with the expression of Pref-1(P 〈 0.01; r = 0.897). At E18.5, Cxcl13, and Ccr7 were significantly expressed in the MLN anlage, but the expression level of Ccl21 was low. The expression level of Cxcl13, Ccr7, and Ccl21 in MLN were significantly increased at 2 w after birth(P 〈 0.05), while the expression of Ccr7 and Ccl21 were significantly decreased at 6 w after birth(P 〈 0.05). Conclusion Adipocyte progenitor cells are involved in the rat MLNs development through differentiation into FRC and FDC. The expression of the relevant chemokines during the development of MLNs is dynamic and may be related to the maintenance of lymph nodes self-balance state.
文摘The purpose of this study was to quantify the effect of the fatty acid alkyl-chain length of a polyethylene glycol(PEG)glyceryl ester,which was used as a microemulsion oil component,on the partitioning of highly lipophilic compounds to the mesenteric lymph after oral administration.Oil blue N,a highly lipophilic anthraquinone derivative,was orally administered to lymph duct-cannulated and untreated rats in two kinds of different microemulsions.Gelucire®50/13 and Gelucire®44/14 were used as the oil component with long chain and medium chain fatty acid portions,respectively,of PEG glyceryl esters in microemulsions.The cumulative amount of oil blue N in lymph fluid was almost the same between the two microemulsions,although the transferred amount of oil component(triglyceride)in the lymph after administration of the Gelucire®50/13 microemulsion was significantly higher than that of the Gelucire®44/14 microemulsion.On the other hand,the solubility of oil blue N in Gelucire®44/14 was much higher than that in Gelucire®50/13.No significant differences were observed between microemulsions in the bioavailability of oil blue N.From these data,the partitioning of oil blue N to the lymph was calculated using a mathematical model,showing that the partitioning ratios of oil blue N to the lymph fluid were almost the same for both microemulsions.The solubility of oil blue N to the oil component of the microemulsions and the transfer of triglycerides to the lymph after administration of the microemulsions counteract each other,leading to similar partitioning ratios of oil blue N to the lymph.
文摘The mesenteric lymph node cavitation syndrome consists of central necrosis of mesenteric lymph nodes and may occur with either celiac disease or a sprue-like intestinal disease that fails to respond to a gluten-free diet. Splenic hypofunction may also be present. The cause is not known but its development during the clinical course of celiac disease is usually indicative of a poor prognosis for the intestinal disorder, a potential for signif icant compli-cations including sepsis and malignancy, particularly T-cell lymphoma, and signif icant mortality. Modern abdominal imaging modalities may permit earlier detection in celiac disease so that earlier diagnosis and improved under-standing of its pathogenesis may result.
基金supported by the National Natural Science Foundation of China (91857101)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB29020000)the National Key Research and Development Program of China (2018YFC2000500)
文摘The gut-liver axis denotes the intricate connection and interaction between gut microbiome and liver, in which compositional and functional shifts in gut microbiome affect host metabolism. Hepatic portal vein of the blood circulation system has been thought to be the major route for metabolite transportation in the gut-liver axis, but the existence and importance of other routes remain elusive. Here, we perform metabolome comparison in blood circulation and mesenteric lymph systems and identify significantly shifted metabolites in serum and mesentery. Using cellular assays, we find that the majority of decreased metabolites in lymph system under high-fat diet are effective in alleviating metabolic disorders, indicating a high potential of lymph system in regulating liver metabolism. Among those, a representative metabolite, L-carnitine, reduces diet-induced obesity in mice. Metabolic tracing analysis identifies that L-carnitine is independently transported by the mesenteric lymph system, serving as an example that lymph circulation comprises a second route in the gut-liver axis to modulate liver metabolism. Our study provides new insights into metabolite transportation via mesenteric lymph system in the gut-liver axis, offers an extended scope for the investigations in host-gut microbiota metabolic interactions and potentially new targets in the treatment of metabolic disorders.
基金Supported by National Science Foundation of China, No. 30370561Natural Science Foundation of Hebei Province, No. C2004000649
文摘AIM: To study the effect of blocking intestinal lymphatic circulation in two-hit rats and explore the significance of intestinal lymphatic circulation in two-hit. METHODS: Wistar rats were divided equally into three groups: mesenteric lymph duct ligation group, non- ligation group and sham group. Mesenteric lymph was diverted by ligation of mesenteric lymph duct, and the two-hit model was established by hemorrhage and lipopolysaccharide (LPS) methods. All rats were sampled for serum pre-experiment and 24 h post- experiment. The organs including kidney, liver, lung and heart were collected for pathomorphologic observation and biochemical investigation. The nitric oxide (NO), malondialdehyde (MDA) and superoxide dismutase (SOD) were determined in serum and tissue homogenate. RESULTS: Pathomorphology study showed that the structures of kidney, lung, liver and heart tissues were normal in sham group; congestion, degeneration and necrosis in non-ligation group; but only mild lesions in ligation group. After two-hits, the contents of AST, ALT, BUN, Cr and LDH-1 in the serum of non-ligation group and ligation group were obviously higher than that in pre-experiment group and sham group, but obviously lower than that in non-ligation group. The contents of NO2-/NO3-, NOS, iNOS and MDA in the serum of non- ligation group were significantly increased, compared with pre-experiment and sham group, but SOD was significantly lower. These parameters were significantly different in ligation group compared with that in sham group, but NO2-/NO3-, iNOS and MDA in ligation group were significantly lower than that in non-ligation group. CONCLUSION: Ligation of mesenteric lymph duct could improve the disturbance of organic function and morphologic damage in two-hit rats; the lymphatic mechanism in two-hit should be emphasized.
基金supported by the National Natural Science Foundation of China(No.32122067 and No.32021005)the Natural Science Foundation of Jiangsu Province(BK20200084)+1 种基金the National Natural Science Foundation of China(U1903205)Collaborative innovation center of food safety and quality control in Jiangsu Province.
文摘The immune regulatory effects of probiotics have been widely recognized to be strain-specific.However,it is unknown if there is a species-or genus-dependent manner.In this study,we use an in vitro mesenteric lymph node(MLN)model to systematically evaluate the immunostimulatory effects of gut-derived potential probiotics.The results exhibit an obvious species or genus consensus immune response pattern.RNA-seq shows that T cell-dependent B cell activation and antibody responses may be inherent to this model.Of the five tested genera,Akkermansia spp.and Clostridium butyrium directly activate the immune response in vitro,as indicated by the secretion of interleukin-10.Bifidobacterium spp.and Bacteroides spp.activate immune response with the help of stimuli(anti-CD3 and anti-CD28 antibodies).Lactobacillus spp.blunt the immune response with or without stimuli.Further investigations show that the cell surface protein of A.muciniphila AH39,which may serve as a T cell receptor cognate antigen,might evoke an in vitro immune activation.In vivo,oral administration of A.muciniphila AH39 influences the proportion of T regulatory cells(Tregs)in MLNs and the spleen under homeostasis in both specific pathogen-free and germ-free mice.All these findings indicate the distinct effects of different genera or species of potential gut-derived probiotics on intestinal and systemic immunity.