期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CONVERGENCE AND SUPERCONVERGENCE ANALYSIS OF LAGRANGE RECTANGULAR ELEMENTS WITH ANY ORDER ON ARBITRARY RECTANGULAR MESHES 被引量:1
1
作者 Mingxia Li Xiaofei Guan Shipeng Mao 《Journal of Computational Mathematics》 SCIE CSCD 2014年第2期169-182,共14页
This paper is to study the convergence and superconvergence of rectangular finite elements under anisotropic meshes. By using of the orthogonal expansion method, an anisotropic Lagrange interpolation is presented. The... This paper is to study the convergence and superconvergence of rectangular finite elements under anisotropic meshes. By using of the orthogonal expansion method, an anisotropic Lagrange interpolation is presented. The family of Lagrange rectangular elements with all the possible shape function spaces are considered, which cover the Intermediate families, Tensor-product families and Serendipity families. It is shown that the anisotropic interpolation error estimates hold for any order Sobolev norm. We extend the convergence and superconvergence result of rectangular finite elements to arbitrary rectangular meshes in a unified way. 展开更多
关键词 Lagrange interpolation Anisotropic error bounds Arbitrary rectangular meshes Orthogonal expansion Superconvergence.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部