期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gillnet Selectivity and Length at Maturity of Nile Tilapia (Oreochromis niloticus L.) in a Tropical Reservoir (Amerti: Ethiopia)
1
作者 Mathewos Hailu 《Journal of Agricultural Science and Technology(A)》 2014年第2期135-140,共6页
The selectivity of gillnets for Oreochromis niloticus in Amerti reservoir (9°63′ N, 37°23′ E) was determined from gillnets with four mesh sizes (60, 80, 100 and 120 mm). Four selectivity models (a nor... The selectivity of gillnets for Oreochromis niloticus in Amerti reservoir (9°63′ N, 37°23′ E) was determined from gillnets with four mesh sizes (60, 80, 100 and 120 mm). Four selectivity models (a normal model assuming fixed spread, a normal model assuming that spread is proportional to mesh size, a lognormal model and a gamma model) were fitted to the data by using the share each length's catch total (SELECT) method. A total of 657 specimens of Oreochromis niloticus were caught (12.0-35.5 cm total length, TD. The sizes at first sexual maturity were 21.5 cm TL and 18.9 cm TL, respectively, for male and female Oreochromis niloticus. The lognormal selectivity curve provided the best fit to the data according to model deviance estimates with optimum selectivity of 16.66, 22.26, 27.78 and 33.38 cm TL for the 60, 80, 100 and 120 mm mesh sizes, respectively. 展开更多
关键词 GILLNET mesh selectivity Nile tilapia SELECT
下载PDF
Zooplankton community size-structure change and mesh size selection under the thermal stress caused by a power plant in a semi-enclosed bay
2
作者 Qianwen Shao Yifeng Zhu +3 位作者 Meixia Dai Xia Lin Chengxu Zhou Xiaojun Yan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第8期62-70,共9页
Zooplankton samples were collected using 505, 160 and 77 μm mesh nets around a power plant during four seasons in 2011. We measured total length of zooplankton and divided zooplankton into seven size classes in order... Zooplankton samples were collected using 505, 160 and 77 μm mesh nets around a power plant during four seasons in 2011. We measured total length of zooplankton and divided zooplankton into seven size classes in order to explore how zooplankton community size-structure might be altered by thermal discharge from power plant. The total length of zooplankton varied from 93.7 to 40 074.7 μm. The spatial distribution of mesozooplankton(200-2 000 μm) populations were rarely affected by thermal discharge, while macro-(2 000-10 000 μm)and megalo-zooplankton(>10 000 μm) had an obvious tendency to migrate away from the outfall of power plant.Thus, zooplankton community tended to become smaller and biodiversity reduced close to power plant.Moreover, we compared the zooplankton communities in three different mesh size nets. Species richness,abundance, evenness index and Shannon-Wiener diversity index of the 505 μm mesh size were significantly lower than those recorded from the 160 and 77 μm mesh size. Average zooplankton abundance was highest in the 77 μm mesh net((27 690.0±1 633.7) ind./m^3), followed by 160 μm mesh net((9 531.1±1 079.5) ind./m^3), and lowest in 505 μm mesh net((494.4±104.7) ind./m^3). The ANOSIM and SIMPER tests confirmed that these differences were mainly due to small zooplankton and early developmental stages of zooplankton. It is the first time to use the 77 μm mesh net to sample zooplankton in such an environment. The 77 μm mesh net had the overwhelming abundance of the copepod genus Oithona, as an order of magnitude greater than recorded for 160 μm mesh net and 100% loss through the 505 μm mesh net. These results indicate that the use of a small or even multiple sampling net is necessary to accurately quantify entire zooplankton community around coastal power plant. 展开更多
关键词 ZOOPLANKTON coastal power plant temperature elevation size class community structure mesh size selection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部