Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic m...Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.展开更多
This paper proposes a new method to simplify mesh in 3D terrain. The 3D terrain is presented by digital elevation model. First, Laplace operator is introduced to calculate sharp degree of mesh point, which indicates t...This paper proposes a new method to simplify mesh in 3D terrain. The 3D terrain is presented by digital elevation model. First, Laplace operator is introduced to calculate sharp degree of mesh point, which indicates the variation trend of the terrain. Through setting a critical value of sharp degree, feature points are selected. Second, critical mesh points are extracted by an recursive process, and constitute the simplified mesh. Third, the algorithm of linear-square interpolation is employed to restore the characteris- tics of the terrain. Last, the terrain is rendered with color and texture. The experimental results demonstrate that this method can compress data by 16% and the error is lower than 10%.展开更多
基金supported by the National Natural Science Foundation of China(No. 51975274)National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics)(No. HTL-A-19K03)
文摘Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.
基金Supported by the National Natural Science Foundation of China (No.61170005)
文摘This paper proposes a new method to simplify mesh in 3D terrain. The 3D terrain is presented by digital elevation model. First, Laplace operator is introduced to calculate sharp degree of mesh point, which indicates the variation trend of the terrain. Through setting a critical value of sharp degree, feature points are selected. Second, critical mesh points are extracted by an recursive process, and constitute the simplified mesh. Third, the algorithm of linear-square interpolation is employed to restore the characteris- tics of the terrain. Last, the terrain is rendered with color and texture. The experimental results demonstrate that this method can compress data by 16% and the error is lower than 10%.