To study the bending strength of mass concrete under dynamic loading, the pure bending zone of three-graded concrete beam is considered as a three-phase composite composed of matrix, aggregate and interface between th...To study the bending strength of mass concrete under dynamic loading, the pure bending zone of three-graded concrete beam is considered as a three-phase composite composed of matrix, aggregate and interface between them on meso-level. Dynamic constitutive model considering strain-rate strengthening effect and damage softening effect is adopted to describe the cocrete and meso-element's damage. The failure mechanisms of beam under impact loading, triagle wave load, dynamic load coupling with initial static loading were simulated by using displacement-controlled FEM. Furthermore, stress-strain curve of the specimens and their dynamic bending strength were obtained. The results obtained from numerical simulation agreed well with experimental data.展开更多
The thermo-mechanical behaviors of shape memory alloy (SMA) wires reinforced smart structures with damages are analyzed through variational principle and meso-mechanical method.A governing equation on the structure is...The thermo-mechanical behaviors of shape memory alloy (SMA) wires reinforced smart structures with damages are analyzed through variational principle and meso-mechanical method.A governing equation on the structure is derived.Mathematical expressions on meso-displacement field,stress-strain field of typical element with damages are presented.A failure criterion for interface failure between SMA wires and matrix is established under two kinds of actuation which are dead-load and temperature,where the temperature is included in effective free restoring strain.In addition,there are some other composing factors in the failure criterion such as interface properties,thermodynamical properties of SMA,initial debonding length L-l,etc.The results are significant to understand structural strength self-adaptive control and failure mechanism of SMA wires reinforced smart structures with damages,and provide a theoretical foundation for further study on the integrity of SMA smart structures.展开更多
The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simp...The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simplified as a two-phase composite of coarse aggregate and mortar,and a meso-mechanical model is established,including the equivalent equation of state model,the equivalent confining pressure strength model and the equivalent dynamic tensile strength model,considering shear stress,large deformation and pore compression.Tests of the mechanical properties of mortar,concrete and limestone were conducted;the results show that the equivalent mechanical properties of concrete calculated by the meso-mechanical model are consistent with the test results,and the equivalent mechanical properties of concrete with different volume fractions of coarse aggregate are obtained.Meso-scale and macro-scale numerical simulations of a projectile penetrating into concrete are carried out,the penetration depths obtained by meso-scale and macro-scale numerical simulations are consistent for different volume fractions of coarse aggregate and different velocities of the projectile,which verifies the rationality of the meso-mechanical model.展开更多
The mechanical behaviors of shape memory alloy (SMA) wires reinforced smart structure with damage were analyzed through the variational principle, a governing equation for the structure was derived, mathematical exp...The mechanical behaviors of shape memory alloy (SMA) wires reinforced smart structure with damage were analyzed through the variational principle, a governing equation for the structure was derived, mathematical expressions for the meso-displacement field, stressstrain field of typical element with damage were presented, and a failure criterion for interface failure between SMA wires and matrix was established under two kinds of actuation which are dead-load and temperature, where the temperature is included in effective free restoring strain. In addition, there are some other composing factors in the failure criterion such as the interface properties, dynamical properties of SMA, initial debonding length L - l etc. The results are significant to understand structural strength self-adapted control and failure mechanism of SMA wires reinforced smart structure with damage.展开更多
On the basis of the three-dimensional(3D)random aggregate&mortar two-phase mesoscale finite element model,C++programming was used to identify the node position information of the interface between the aggregate an...On the basis of the three-dimensional(3D)random aggregate&mortar two-phase mesoscale finite element model,C++programming was used to identify the node position information of the interface between the aggregate and mortar elements.The nodes were discretized at this position and the zero-thickness cohesive elements were inserted.After that,the crack energy release rate fracture criterion based on the fracture mechanics theory was assigned to the failure criterion of the interface transition zone(ITZ)elements.Finally,the three-phase mesomechanical model based on the combined finite discrete element method(FDEM)was constructed.Based on this model,the meso-crack extension and macro-mechanical behaviour of coral aggregate concrete(CAC)under uniaxial compression were successfully simulated.The results demonstrated that the meso-mechanical model based on FDEM has excellent applicability to simulate the compressive properties of CAC.展开更多
Composite scarf repair is applied in airplane load-bearing structures. But the repairs would have different boundary supports in real situation, such as simply support, clamped support and flexible support. With diffe...Composite scarf repair is applied in airplane load-bearing structures. But the repairs would have different boundary supports in real situation, such as simply support, clamped support and flexible support. With different boundary supports, the bonded scarf repair of composite structures could have diverse damage mechanisms and responses. This work intends to study the impact performance of different boundaries. For this purpose, experimental tests were carried out on the specimens with two sides support and four sides support. The impact load and deflection was monitored during the tests. After impact being finished, the meso-mechanism was studied by means of micro-cracks of the side section for two sides support condition and cross section for the four sides support condition. It was possible to conclude that the four sides boundary possess higher impact resistance maximum loads, lower displacements and lower extent load dropping. In terms of damage modes, as the impact energy relative low 12 J and 16 J, the central position of scarf bonding zone for two sides support appears adhesive cohesive failure and adhesive-composite interface failure. When the energy increases to 20 J, the dominated damage of two sides support moves down to the feathered tip. For four sides support, the critical energy level is 25 J, under which the scarf adhesive begins to be damaged.展开更多
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou...Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.展开更多
Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively...Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively studied, researches on SMA smart structures with damages have rarely been reported thus far. In this paper, thermo-mechanical behaviors of SMA fiber reinforced smart structures with damages are analyzed through a shear lag model and the variational principle, Mathematical expressions of the meso-displacement field and the stress-strain field of a typical element with damages are obtained, and a failure criterion for interface failure between SMA fibers and matrix is established, which is applied to an example. Results presented herein may provide a theoretical foundation for further studies on integrity of SMA smart structures.展开更多
A new Martensitic transformation kinetic model for shape memory alloy (SMA) is proposed based on the phenomenological description of the Martensitic transformation heat flow-temperature curve and on the linear relat...A new Martensitic transformation kinetic model for shape memory alloy (SMA) is proposed based on the phenomenological description of the Martensitic transformation heat flow-temperature curve and on the linear relationship between the partial derivatives of Martensite fraction and of Gbbis free energy with respect to the temperature. A meso-mechanical model is developed to describe the longitudinal stiffness reduction and thermo-dilatation variation of the composites caused by fiber breaking or fiber peeling off the base material. One-dimensional incremental constitutive relation is then established for SMA wire reinforced smart composites with damages by introducing three parameters to respectively describe the extent of fiber breaking, fiber peeling off the base material and interface weakening. The results presented herein may provide a theoretical basis for further studying on SMA smart composites with damages.展开更多
This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC...This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.展开更多
The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model,in which the mecha...The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model,in which the mechanical parameters derived from macro-scale material tests were applied directly to the mortar elements.By comparing the calculated results with those predicted by the Carpinteri andWeibull size effects laws,a series of formulas to convert the macro-scale mechanical parameters of mortar and interface to those at the meso-scale were proposed through a fitting analysis.Based on the proposed formulas,numerical simulation of axial compressive and tensile failure processes of concrete and cement mortar materials,respectively were conducted.The calculated results were a good match with the test results.展开更多
To prevent possible seismic catastrophe, naturally, its assessment is deeply concerned over in China as a series of arch dams of about 300 m high will be constructed in the severe seismic regions. In this paper the ma...To prevent possible seismic catastrophe, naturally, its assessment is deeply concerned over in China as a series of arch dams of about 300 m high will be constructed in the severe seismic regions. In this paper the major obstacles to the seismic catastrophe assessment of high arch dams which focused on clearly defining the Maximum Credible Earthquake (MCE) and reasonably selecting its site-specific seismic input parameters as well as quantitatively evaluating the limit state of dam-breach for designers are emphasized. Some breakthrough progress with pending problems is presented, such as to adopt more reasonable seismic input parameters based on seismic hazard evaluation of dam site; to develop model and method more fit in with the reality for non-linear seismic analysis of dam-foundation-reservoir system. The ideals of further improvement both in evaluating the MCE and defining the quantitative index of its performance objective are discussed, including how to use semi-empirical method of simulating strong ground motion near fault, how to solve the long-standing problem of stress singularity at dam heel, and how to investigate dynamic behaviors of fully-graded dam concrete through dynamic tests and 3-dimensional meso-mechanics analysis checked by CT technique.展开更多
In order to study the fragmentation law,the confined compression experiment of granular assemblies has been conducted to explore the particle breakage characteristic by DEM approach in this work.It is shown that conta...In order to study the fragmentation law,the confined compression experiment of granular assemblies has been conducted to explore the particle breakage characteristic by DEM approach in this work.It is shown that contact and contact force during the loading process gradually transform from anisotropy to isotropy.Meanwhile,two particle failure modes caused by different contact force states are analyzed,which are single-through-crack failure and multi-short-crack failure.Considering the vertical distribution of the number of cracks and the four characteristic stress distributions(the stress related to the maximum contact force,the major principal stress,the deviatoric stress and the mean stress),it is pointed out that the stress based on the maximum contact force and the major principal stress can reflect the distribution of cracks accurately.In addition,the size effect of particle crushing indicates that small size particles are prone to break.The lateral pressure coefficient of four size particles during the loading process is analyzed to explain the reason for the size effect of particle breakage.展开更多
基金Supported by the National Natural Science Foundation(No.90510011)National Science Fund for Distinguished Young Scholars(No.50325826)
文摘To study the bending strength of mass concrete under dynamic loading, the pure bending zone of three-graded concrete beam is considered as a three-phase composite composed of matrix, aggregate and interface between them on meso-level. Dynamic constitutive model considering strain-rate strengthening effect and damage softening effect is adopted to describe the cocrete and meso-element's damage. The failure mechanisms of beam under impact loading, triagle wave load, dynamic load coupling with initial static loading were simulated by using displacement-controlled FEM. Furthermore, stress-strain curve of the specimens and their dynamic bending strength were obtained. The results obtained from numerical simulation agreed well with experimental data.
文摘The thermo-mechanical behaviors of shape memory alloy (SMA) wires reinforced smart structures with damages are analyzed through variational principle and meso-mechanical method.A governing equation on the structure is derived.Mathematical expressions on meso-displacement field,stress-strain field of typical element with damages are presented.A failure criterion for interface failure between SMA wires and matrix is established under two kinds of actuation which are dead-load and temperature,where the temperature is included in effective free restoring strain.In addition,there are some other composing factors in the failure criterion such as interface properties,thermodynamical properties of SMA,initial debonding length L-l,etc.The results are significant to understand structural strength self-adaptive control and failure mechanism of SMA wires reinforced smart structures with damages,and provide a theoretical foundation for further study on the integrity of SMA smart structures.
基金supported by the National Natural Science Foundation of China [grant number 51278250]
文摘The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simplified as a two-phase composite of coarse aggregate and mortar,and a meso-mechanical model is established,including the equivalent equation of state model,the equivalent confining pressure strength model and the equivalent dynamic tensile strength model,considering shear stress,large deformation and pore compression.Tests of the mechanical properties of mortar,concrete and limestone were conducted;the results show that the equivalent mechanical properties of concrete calculated by the meso-mechanical model are consistent with the test results,and the equivalent mechanical properties of concrete with different volume fractions of coarse aggregate are obtained.Meso-scale and macro-scale numerical simulations of a projectile penetrating into concrete are carried out,the penetration depths obtained by meso-scale and macro-scale numerical simulations are consistent for different volume fractions of coarse aggregate and different velocities of the projectile,which verifies the rationality of the meso-mechanical model.
基金Project partially supported by the Aeronautical Science Foundation of China (No. 05G52054).
文摘The mechanical behaviors of shape memory alloy (SMA) wires reinforced smart structure with damage were analyzed through the variational principle, a governing equation for the structure was derived, mathematical expressions for the meso-displacement field, stressstrain field of typical element with damage were presented, and a failure criterion for interface failure between SMA wires and matrix was established under two kinds of actuation which are dead-load and temperature, where the temperature is included in effective free restoring strain. In addition, there are some other composing factors in the failure criterion such as the interface properties, dynamical properties of SMA, initial debonding length L - l etc. The results are significant to understand structural strength self-adapted control and failure mechanism of SMA wires reinforced smart structure with damage.
基金supported by the Key Projects of the National Science Foundation of China(Nos.52178190,52078250,11832013)
文摘On the basis of the three-dimensional(3D)random aggregate&mortar two-phase mesoscale finite element model,C++programming was used to identify the node position information of the interface between the aggregate and mortar elements.The nodes were discretized at this position and the zero-thickness cohesive elements were inserted.After that,the crack energy release rate fracture criterion based on the fracture mechanics theory was assigned to the failure criterion of the interface transition zone(ITZ)elements.Finally,the three-phase mesomechanical model based on the combined finite discrete element method(FDEM)was constructed.Based on this model,the meso-crack extension and macro-mechanical behaviour of coral aggregate concrete(CAC)under uniaxial compression were successfully simulated.The results demonstrated that the meso-mechanical model based on FDEM has excellent applicability to simulate the compressive properties of CAC.
文摘Composite scarf repair is applied in airplane load-bearing structures. But the repairs would have different boundary supports in real situation, such as simply support, clamped support and flexible support. With different boundary supports, the bonded scarf repair of composite structures could have diverse damage mechanisms and responses. This work intends to study the impact performance of different boundaries. For this purpose, experimental tests were carried out on the specimens with two sides support and four sides support. The impact load and deflection was monitored during the tests. After impact being finished, the meso-mechanism was studied by means of micro-cracks of the side section for two sides support condition and cross section for the four sides support condition. It was possible to conclude that the four sides boundary possess higher impact resistance maximum loads, lower displacements and lower extent load dropping. In terms of damage modes, as the impact energy relative low 12 J and 16 J, the central position of scarf bonding zone for two sides support appears adhesive cohesive failure and adhesive-composite interface failure. When the energy increases to 20 J, the dominated damage of two sides support moves down to the feathered tip. For four sides support, the critical energy level is 25 J, under which the scarf adhesive begins to be damaged.
文摘Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.
基金The project supported by the National Natural Science Foundation of China(10072026.50135030) Aeronautical Science Foundation of China(01G52041)
文摘Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively studied, researches on SMA smart structures with damages have rarely been reported thus far. In this paper, thermo-mechanical behaviors of SMA fiber reinforced smart structures with damages are analyzed through a shear lag model and the variational principle, Mathematical expressions of the meso-displacement field and the stress-strain field of a typical element with damages are obtained, and a failure criterion for interface failure between SMA fibers and matrix is established, which is applied to an example. Results presented herein may provide a theoretical foundation for further studies on integrity of SMA smart structures.
基金the Aeronautical Science Foundation-of China(No.05G52054)the National Natural Science Foundation of China(No.10672077).
文摘A new Martensitic transformation kinetic model for shape memory alloy (SMA) is proposed based on the phenomenological description of the Martensitic transformation heat flow-temperature curve and on the linear relationship between the partial derivatives of Martensite fraction and of Gbbis free energy with respect to the temperature. A meso-mechanical model is developed to describe the longitudinal stiffness reduction and thermo-dilatation variation of the composites caused by fiber breaking or fiber peeling off the base material. One-dimensional incremental constitutive relation is then established for SMA wire reinforced smart composites with damages by introducing three parameters to respectively describe the extent of fiber breaking, fiber peeling off the base material and interface weakening. The results presented herein may provide a theoretical basis for further studying on SMA smart composites with damages.
基金Funded by the National Natural Science Foundation of China (Nos.U21A20149, 51878003, 51908378)Research Reserve of Anhui Jianzhu University (No.2022XMK01)Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No. 2022AH010017)。
文摘This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.
基金The financial support from the National Natural Science Foundation of China(Grant No.50978191)is sincerely acknowledged by the authors.
文摘The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model,in which the mechanical parameters derived from macro-scale material tests were applied directly to the mortar elements.By comparing the calculated results with those predicted by the Carpinteri andWeibull size effects laws,a series of formulas to convert the macro-scale mechanical parameters of mortar and interface to those at the meso-scale were proposed through a fitting analysis.Based on the proposed formulas,numerical simulation of axial compressive and tensile failure processes of concrete and cement mortar materials,respectively were conducted.The calculated results were a good match with the test results.
基金Supported by the National National Science Foundation of China (Grant No. 90510017)
文摘To prevent possible seismic catastrophe, naturally, its assessment is deeply concerned over in China as a series of arch dams of about 300 m high will be constructed in the severe seismic regions. In this paper the major obstacles to the seismic catastrophe assessment of high arch dams which focused on clearly defining the Maximum Credible Earthquake (MCE) and reasonably selecting its site-specific seismic input parameters as well as quantitatively evaluating the limit state of dam-breach for designers are emphasized. Some breakthrough progress with pending problems is presented, such as to adopt more reasonable seismic input parameters based on seismic hazard evaluation of dam site; to develop model and method more fit in with the reality for non-linear seismic analysis of dam-foundation-reservoir system. The ideals of further improvement both in evaluating the MCE and defining the quantitative index of its performance objective are discussed, including how to use semi-empirical method of simulating strong ground motion near fault, how to solve the long-standing problem of stress singularity at dam heel, and how to investigate dynamic behaviors of fully-graded dam concrete through dynamic tests and 3-dimensional meso-mechanics analysis checked by CT technique.
基金supported by the National Natural Science Foundations of China (grant Nos.41672343 and 41772338).
文摘In order to study the fragmentation law,the confined compression experiment of granular assemblies has been conducted to explore the particle breakage characteristic by DEM approach in this work.It is shown that contact and contact force during the loading process gradually transform from anisotropy to isotropy.Meanwhile,two particle failure modes caused by different contact force states are analyzed,which are single-through-crack failure and multi-short-crack failure.Considering the vertical distribution of the number of cracks and the four characteristic stress distributions(the stress related to the maximum contact force,the major principal stress,the deviatoric stress and the mean stress),it is pointed out that the stress based on the maximum contact force and the major principal stress can reflect the distribution of cracks accurately.In addition,the size effect of particle crushing indicates that small size particles are prone to break.The lateral pressure coefficient of four size particles during the loading process is analyzed to explain the reason for the size effect of particle breakage.