期刊文献+
共找到16,317篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of seepage pressure on the mechanical behaviors and microstructure of sandstone 被引量:1
1
作者 Xuewei Liu Juxiang Chen +3 位作者 Bin Liu Sai Wang Quansheng Liu Jin Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2033-2051,共19页
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur... Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone. 展开更多
关键词 Rock mechanics Mechanical property seepage pressure Numerical simulation MICROCRACKS
下载PDF
Effect mechanism of seepage force on the hydraulic fracture propagation
2
作者 Haiyang Wang Desheng Zhou +1 位作者 Yi Zou Peng Zheng 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期223-240,共18页
The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a not... The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability. 展开更多
关键词 Hydraulic fracturing seepage force Fracture propagation Discrete element method Reservoir heterogeneity
下载PDF
Impact of Osmotic Pressure on Seepage in Shale Oil Reservoirs
3
作者 Lijun Mu Xiaojia Xue +2 位作者 Jie Bai Xiaoyan Li Xueliang Han 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1365-1379,共15页
Following large-scale volume fracturing in shale oil reservoirs,well shut-in measures are generally employed.Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the sh... Following large-scale volume fracturing in shale oil reservoirs,well shut-in measures are generally employed.Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the shut-in phase in augmenting shale oil productivity.Unlike conventional reservoirs,shale oil reservoirs exhibit characteristics such as low porosity,low permeability,and rich content of organic matter and clay minerals.Notably,the osmotic pressure effects occurring between high-salinity formation water and low-salinity fracturing fluids are significant.The current understanding of the mobilization patterns of crude oil in micro-pores during the imbibition process remains nebulous,and the mechanisms underpinning osmotic pressure effects are not fully understood.This study introduces a theoretical approach,by which a salt ion migration control equation is derived and a mathematical model for spontaneous imbibition in shale is introduced,which is able to account for both capillary and osmotic pressures.Results indicate that during the spontaneous imbibition of low-salinity fluids,osmotic effects facilitate the migration of external fluids into shale pores,thereby complementing capillary forces in displacing shale oil.When considering both capillary and osmotic pressures,the calculated imbibition depth increases by 12%compared to the case where only capillary forces are present.The salinity difference between the reservoir and the fracturing fluids significantly influences the imbibition depth.Calculations for the shutin phase reveal that the pressure between the matrix and fractures reaches a dynamic equilibrium after 28 days of shut-in.During the production phase,the maximum seepage distance in the target block is approximately 6.02 m. 展开更多
关键词 Shale oil osmotic pressure numerical simulation effective seepage distance
下载PDF
Experimental study of the effects of a multistage pore-throat structure on the seepage characteristics of sandstones in the Beibuwan Basin:Insights into the flooding mode
4
作者 Lei Wang Xiao Lei +7 位作者 Qiao-Liang Zhang Guang-Qing Yao Bo Sui Xiao-Jun Chen Ming-Wei Wang Zhen-Yu Zhou Pan-Rong Wang Xiao-Dong Peng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1044-1061,共18页
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a... To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs. 展开更多
关键词 Beibuwan Basin Multistage pore-throat structure Multistage seepage characteristics Microscopic visualization HETEROGENEITY Gas/water flooding Flooding mode
下载PDF
Research Status and Development Direction of Gas-containing Coal Seepage Model 被引量:16
5
作者 程波 《矿业安全与环保》 北大核心 2017年第5期93-97,共5页
下载PDF
A new classification of seepage control mechanisms in geotechnical engineering 被引量:10
6
作者 Yifeng Chen Ran Hu +3 位作者 Chuangbing Zhou Dianqing Li Guan Rong Qinghui Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期209-222,共14页
Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mech... Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics;and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow,including control mechanisms by coupled processes,initial states,boundary conditions and hydraulic properties.The effects of each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal,and hence the reasonability of classification is demonstrated.Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided,and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices. 展开更多
关键词 seepage flow seepage control mechanisms optimization design coupled processes initial states boundary conditions hydraulic properties
下载PDF
Vertical Migration of Fine-Grained Sediments from Interior to Surface of Seabed Driven by Seepage Flows–‘Sub-Bottom Sediment Pump Action' 被引量:9
7
作者 ZHANG Shaotong JIA Yonggang +5 位作者 WEN Mingzheng WANG Zhenhao Zhang Yaqi ZHU Chaoqi Li Bowen LIU Xiaolei 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第1期15-24,共10页
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, ... A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as ‘sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that ‘sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of ‘sediment pump' are determined as hydrodynamics(wave energy), degree of consolidation, index of bioturbation(permeability) and content of fine-grained materials(sedimentary age). This new perspective of ‘sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area. 展开更多
关键词 sediment PUMP action vertical migration FINE-GRAINED PORE pressure seepage flows
下载PDF
Seepage simulation of high concrete-faced rockfill dams based on generalized equivalent continuum model 被引量:6
8
作者 Shou-kai Chen Qi-dong He Ji-gang Cao 《Water Science and Engineering》 EI CAS CSCD 2018年第3期250-257,共8页
This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m... This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs. 展开更多
关键词 Concrete-faced ROCKFILL dam(CFRD) GENERALIZED equivalent CONTINUUM model Node virtual flow method Fractured rock mass seepage field seepage coefficient
下载PDF
Further studies on the numerical simulation of bubble plumes in the cold seepage active region 被引量:9
9
作者 LI Canping GOU Limin +2 位作者 YOU Jiachun LIU Xuewei OU Chuling 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第1期118-124,共7页
Using the occurrence characteristics of bubble plumes in the South China Sea as a reference, this paper continues to study the seismic responses produced by bubble plumes in the cold seepage active region. To make the... Using the occurrence characteristics of bubble plumes in the South China Sea as a reference, this paper continues to study the seismic responses produced by bubble plumes in the cold seepage active region. To make the plume modelling scheme more reasonable, we modified the original modelling scheme and reconstructed a plume water body model based on the variation of its radius as bubbles rise in seawater. The plume seismic records of shot gathers were obtained by forward simulation. The seismic records of single shot show obvious characteristics of a scattering wave field and the periodic characteristics of the model. Seismic records of shot gathers were processed using prestack depth migration. The boundary of its imaging section has a good convergence effect. The migration sections can be imaged distinctly with higher accuracy. The aforementioned studies once again laid a foundation for the further study of the seismic responses produced by plumes. They also gradually probed a more suitable seismic data processing method for plumes and provided a theoretical guidance for the identification of plumes. 展开更多
关键词 PLUME cold seepage gas hydrate scattered wave numerical simulation
下载PDF
Research on the temperature field of a partially freezing sand barrier with groundwater seepage 被引量:7
10
作者 Li Yan Lao Zhi Qiang Ji +1 位作者 Liang Liang Huang Shang Jing Li 《Research in Cold and Arid Regions》 CSCD 2017年第3期280-288,共9页
To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing,a simulated-freezing test with seepage of Xuzhou sand was completed by using a model t... To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing,a simulated-freezing test with seepage of Xuzhou sand was completed by using a model test developed in-house equipment.By means of three group freezing tests with different seepage velocities,we discovered the phenomenon of the asymmetry of the temperature field under the influence of seepage.The temperature upstream was obviously higher than that downstream.The temperature gradient upstream was also steeper than that downstream.With a higher seepage velocity,the asymmetry of the temperature field is more pronounced.The asymmetry for the interface temperature profile is more strongly manifest than for the main surface temperature profile.The cryogenic barrier section is somewhat"heartshaped".With the increasing velocity of the seepage flow,the cooling rate of the soil decreases.It takes much time to reach the equilibrium state of the soil mass.In our study,seepage flow velocities of 0 m/d,7.5 m/d,and 15 m/d showed the soilcooling rate of 4.35°C/h,4.96°C/h,and 1.72°C/h,respectively. 展开更多
关键词 FREEZING temperature FIELD seepage FREEZING SOIL BARRIER model test
下载PDF
Seepage law and permeability calculation of coal gas based on Klinkenberg effect 被引量:6
11
作者 王登科 魏建平 +2 位作者 付启超 刘勇 夏玉玲 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1973-1978,共6页
Focused on the Klinkenberg effect on gas seepage, the independently developed triaxial experimental system of gas seepage was applied to conduct research on the seepage characteristics of coal seam gas. By means of ex... Focused on the Klinkenberg effect on gas seepage, the independently developed triaxial experimental system of gas seepage was applied to conduct research on the seepage characteristics of coal seam gas. By means of experimental data analysis and theoretical derivation, a calculation method of coal seam gas permeability was proposed, which synthesized the respective influences of gas dynamic viscosity, compressibility factor and Klinkenberg effect. The study results show that the Klinkenberg effect has a significant influence on the coal seam gas seepage, the permeability estimated with the method considering the Klinkenberg effect is correct, and this permeability can fully reflect the true seepage state of the gas. For the gas around the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability may be ignored. For the gas deviating far away from the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability must be considered. The research results have certain guiding significance in forming a correct understanding of the Klinkenberg effect and selecting a more accurate calculation method for the permeability of coal containing gas. 展开更多
关键词 coalbed gas seepage law Klinkenberg effect gas adsorption-desorption PERMEABILITY
下载PDF
Mechanism and control of water seepage of vertical feeding borehole for solid materials in backflling coal mining 被引量:12
12
作者 Zhou Yuejin Guo Hongzeng +1 位作者 Cao Zhengzheng Zhang Jiangong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期675-679,共5页
To solve the problem of water seepage of vertical feeding borehole for solid materials,we established the fluid-solid coupling dynamic model of groundwater flowing in rock mass adjacent to the vertical feeding borehol... To solve the problem of water seepage of vertical feeding borehole for solid materials,we established the fluid-solid coupling dynamic model of groundwater flowing in rock mass adjacent to the vertical feeding borehole.Combining with the engineering geological conditions,we built a numeral model to study the influence rule of the aquifer hydraulic pressure and seepage location of feeding borehole on the amount of seepage with fnite element numerical method.The results show that the nonlinear relationship is presented among the amount of seepage,the seepage location and aquifer hydraulic pressure.The higher the aquifer hydraulic pressure is,the closer the distance between seepage location and aquifer is,and the faster the harmful levels of aquifer will grow.In practice,we calculated the allowable seepage of feeding borehole by the optimum moisture content and natural moisture content of backflling materials,and then determined the protection zone of feeding borehole,so the moisture content of backflling materials can be controlled within the scope of optimum moisture content. 展开更多
关键词 Backflling coal mining Vertical feeding borehole Mechanism of water seepage Optimum moisture content
下载PDF
Unified analytical solution for deep circular tunnel with consideration of seepage pressure,grouting and lining 被引量:5
13
作者 LI Xue-feng DU Shou-ji CHEN Bing 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1483-1493,共11页
A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone... A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed. 展开更多
关键词 UNIFIED strength theory (UST) INTERMEDIATE principal stress seepage pressure GROUTING LINING analytical solution
下载PDF
Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area,South China Sea 被引量:6
14
作者 ZHANG Mei LU Hongfeng +3 位作者 GUAN Hongxiang LIU Lihua WU Daidai WU Nengyou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第7期20-27,共8页
The northern slope of the South China Sea is a gas-hydrate-bearing region related to a high deposition rate of organic-rich sediments co-occurring with intense methanogenesis in subseafloor environments.Anaerobic oxid... The northern slope of the South China Sea is a gas-hydrate-bearing region related to a high deposition rate of organic-rich sediments co-occurring with intense methanogenesis in subseafloor environments.Anaerobic oxidation of methane(AOM) coupled with bacterial sulfate reduction results in the precipitation of solid phase minerals in seepage sediment,including pyrite and gypsum.Abundant aggregates of pyrites and gypsums are observed between the depth of 667 and 850 cm below the seafloor(cmbsf) in the entire core sediment of HS328 from the northern South China Sea.Most pyrites are tubes consisting of framboidal cores and outer crusts.Gypsum aggregates occur as rosettes and spheroids consisting of plates.Some of them grow over pyrite,indicating that gypsum precipitation postdates pyrite formation.The sulfur isotopic values(δ^34 S) of pyrite vary greatly(from –46.6‰ to –12.3‰ V-CDT) and increase with depth.Thus,the pyrite in the shallow sediments resulted from organoclastic sulfate reduction(OSR) and is influenced by AOM with depth.The relative high abundance and δ^34 S values of pyrite in sediments at depths from 580 to 810 cmbsf indicate that this interval is the location of a paleo-sulfate methane transition zone(SMTZ).The sulfur isotopic composition of gypsum(from–25‰ to –20.7‰) is much lower than that of the seawater sulfate,indicating the existence of a 34 S-depletion source of sulfur species that most likely are products of the oxidation of pyrites formed in OSR.Pyrite oxidation is controlled by ambient electron acceptors such as MnO2,iron(Ⅲ) and oxygen driven by the SMTZ location shift to great depths.The δ^34 S values of gypsum at greater depth are lower than those of the associated pyrite,revealing downward diffusion of 34 S-depleted sulfate from the mixture of oxidation of pyrite derived by OSR and the seawater sulfate.These sulfates also lead to an increase of calcium ions from the dissolution of calcium carbonate mineral,which will be favor to the formation of gypsum.Overall,the mineralogy and sulfur isotopic composition of the pyrite and gypsum suggest variable redox conditions caused by reduced seepage intensities,and the pyrite and gypsum can be a recorder of the intensity evolution of methane seepage. 展开更多
关键词 pyrite tube authigenic gypsum sulfur isotopes methane seepage northern South China Sea
下载PDF
Stability analysis of shallow tunnels subjected to seepage with strength reduction theory 被引量:20
15
作者 杨小礼 黄阜 《Journal of Central South University》 SCIE EI CAS 2009年第6期1001-1005,共5页
Based on strength reduction theory,the stability numbers of shallow tunnels were investigated within the framework of upper and lower bound theorems of limit analysis. Stability solutions taking into account of water ... Based on strength reduction theory,the stability numbers of shallow tunnels were investigated within the framework of upper and lower bound theorems of limit analysis. Stability solutions taking into account of water seepage were presented and compared with those without considering seepage. The comparisons indicate that the maximum difference does not exceed 3.7%,which proves the present method credible. The results show that stability numbers of shallow tunnels considering seepage are much less than those without considering seepage,and that the difference of stability numbers between considering seepage and without considering seepage increase with increasing the depth ratio. The stability numbers decrease with increasing permeability coefficient and groundwater depth. Seepage has significant effects on the stability numbers of shallow tunnels. 展开更多
关键词 strength reduction theory seepage permeability coefficient stability numbers
下载PDF
Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm 被引量:8
16
作者 Yan Xiang Shu-yan Fu +2 位作者 Kai Zhu Hui Yuan Zhi-yuan Fang 《Water Science and Engineering》 EI CAS CSCD 2017年第1期70-77,共8页
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,... Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly. 展开更多
关键词 Monitoring model Particle swarm optimization algorithm Earth rock dam Lagging effect TYPHOON seepage pressure Mutation factor Piezometric level
下载PDF
Effect of vibration on seepage feeding during low-pressure casting of ZL205A alloy 被引量:3
17
作者 Ru-jia Wang Shi-ping Wu Wei Chen 《China Foundry》 SCIE 2019年第1期40-45,共6页
Appropriate vibration can promote the feeding capacity of gravity casting, but the effect of vibration on the feeding of low-pressure casting is not clear. The effect of vibration on the seepage feeding of ZL205A allo... Appropriate vibration can promote the feeding capacity of gravity casting, but the effect of vibration on the feeding of low-pressure casting is not clear. The effect of vibration on the seepage feeding of ZL205A alloy was investigated by vibration casting experiment and physical simulation. The aqueous solution of sodium carboxymethyl cellulose(CMC) with the same rheological characteristic of metal melt was used. The results show that vibration can improve the feeding capacity and reduce shrinkage defects of ZL205A alloy in lowpressure casting. The orthogonal physical simulation experiments indicate that vibration with low frequency and great exerted force can significantly improve the seepage velocity of non-Newtonian fluid with solid particles in porous medium. The seepage phenomenon in CMC solution shows that vibration can change the structure of accumulated particles at the seepage entrance, and thus open the blocked feeding channel. The numerical simulation of one-dimensional semisolid fluid seepage reveals that vibration can form a wave field in the porous medium, which can reduce the adhesion force between fluid and capillary wall and destroy the boundary layer of fluid, and thus promote the seepage velocity. 展开更多
关键词 mechanical VIBRATION PHYSICAL simulation seepage ZL205A ALLOY
下载PDF
Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures 被引量:13
18
作者 FU Hong-yuan JIANG Huang-bin +3 位作者 QIU Xiang JI Yun-peng CHEN Wen ZENG Ling 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1907-1916,共10页
To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental sy... To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function. 展开更多
关键词 silty mudstone seepage characteristic confining pressure TEMPERATURE PERMEABILITY
下载PDF
Monitoring models for base flow effect and daily variation of dam seepage elements considering time lag effect 被引量:11
19
作者 Shao-wei Wang Ying-li Xu +1 位作者 Chong-shi Gu Teng-fei Bao 《Water Science and Engineering》 EI CAS CSCD 2018年第4期344-354,共11页
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an... Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution. 展开更多
关键词 Dam seepage monitoring model Time lag effect Support vector machine(SVM) Sensitivity analysis Base flow Daily variation Piezometric tube water level
下载PDF
Controlling Effects of Tight Reservoir Micropore Structures on Seepage Ability: A Case Study of the Upper Paleozoic of the Eastern Ordos Basin, China 被引量:4
20
作者 YANG Bo QU Hongjun +4 位作者 PU Renhai TIAN Xiahe YANG Huan DONG Wenwu CHEN Yahui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第2期322-336,共15页
In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-... In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-rate mercury injection(CRMI) experiments are performed to study the micropore structure of the reservoir. Nuclear magnetic resonance(NMR), gas-water relative seepage, and gas-water two-phase displacement studies are performed to examine the seepage ability and parameters of the reservoir, and further analyses are done to confirm the controlling effects of reservoir micropore structures on seepage ability. The experimental results show that Benxi, Taiyuan, Shanxi, and Shihezi formations in the study area are typical ultra-low porosity and ultra-low permeability reservoirs. Owing to compaction and later diagenetic transformation, they contain few primary pores. Secondary pores are the main pore types of reservoirs in the study area. Six main types of secondary pores are: intergranular dissolved pores, intragranular dissolved pores, lithic dissolved pores, intercrystalline dissolved pores, micropores, and microfracture. The results show that reservoirs with small pore-throat radius, medium displacement pressure, and large differences in pore-throat structures are present in the study area. The four types of micropore structures observed are: lower displacement pressure and fine pores with medium-fine throats, low displacement pressure and fine micropores with fine throats, medium displacement pressure and micropores with micro-fine throats, and high displacement pressure and micropores with micro throats. The micropore structure is complex, and the reservoir seepage ability is poor in the study areas. The movable fluid saturation, range of the gas-water two-phase seepage zone, and displacement types are the three parameters that well represent the reservoir seepage ability. According to the characteristic parameters of microscopic pore structure and seepage characteristics, the reservoirs in the study area are classified into four types(Ⅰ–Ⅳ), and types Ⅰ, Ⅱ, and Ⅲ are the main types observed. From type Ⅰ to type Ⅳ, the displacement pressure increases, and the movable fluid saturation and gas-water two-phase seepage zone decrease, and the displacement type changes from the reticulation-uniform displacement to dendritic and snake like. 展开更多
关键词 micro-pore structure seepage ability movable fluid SATURATION the range of GAS-WATER two phase seepage zone DISPLACEMENT types
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部