期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Discrete Element Modelling of Damage Evolution of Concrete Considering Meso-Structure of ITZ
1
作者 Weiliang Gao Shixu Jia +1 位作者 Tingting Zhao Zhiyong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3495-3511,共17页
The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element metho... The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element method(DEM)has been developed for modeling concrete.This new approach efficiently simulates the meso-structure of ITZs,accurately capturing their heterogeneous properties.Validation against established uniaxial compression experiments confirms the precision of thismodel.The proposedmodel canmodel the process of damage evolution containing cracks initiation,propagation and penetration.Under increasing loads,cracks within ITZs progressively accumulate,culminating in macroscopic fractures that traverse themortarmatrix,forming the complex,serpentine path of cracks.This study reveals four distinct displacement patterns:tensile compliant,tensile opposite,mixed tensile-shear,and shear opposite patterns,each indicative of different stages in concrete’s damage evolution.The widening angle of these patterns delineates the progression of cracks,with the tensile compliant pattern signaling the initial crack appearance and the shear opposite pattern indicating the concrete model’s ultimate failure. 展开更多
关键词 Discrete element method damage evolution interfacial transition zone meso-structure model
下载PDF
Numerical investigations on mechanical characteristics and failure mechanism of outwash deposits based on random meso-structures using discrete element method 被引量:2
2
作者 张强 徐卫亚 +2 位作者 刘沁雅 沈俊良 闫龙 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2894-2905,共12页
Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this wo... Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results. 展开更多
关键词 outwash DEPOSITS RANDOM meso-structures DISCRETE ELEMENT method NUMERICAL tests mechanical characteristics FAILURE mechanism
下载PDF
Damage Simulation for 3D Braided Composites by Homogenization Method 被引量:3
3
作者 Dong Jiwei Feng Miaolin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第6期677-685,共9页
In order to study the failure patterns and strength of 3D braided composites from the microscopic view,the damage propagation under tensile loading steps in three kinds of unit cells is simulated.The homogenization fo... In order to study the failure patterns and strength of 3D braided composites from the microscopic view,the damage propagation under tensile loading steps in three kinds of unit cells is simulated.The homogenization formula of micro-stress and the solving approach of finite element method are given firstly.A criterion is presented to determine the damage and its pattern of each element,and then the stiffness degradation method based on Murakami's geometric damage theory is used to simulate the status of damage under tensile loading steps for three kinds of unit cells.It can be seen that the damage percentage and damage pattern of damaged unit cell are totally different for different kind of unit cells.More damaged elements are observed for face cell and corner cell than that for body cell.It is also observed that the damage firstly occurs at the area of face cell,which agrees well with experimental results.It is verified that considering the effects of face and corner cells are important for the damage and strength analysis of 3D braided composites. 展开更多
关键词 DAMAGE 3D braided composites meso-structure HOMOGENIZATION finite element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部