Polyacrylamide(PAM)is generally employed in wastewater treatment processes such as sludge dewatering and therefore exists in the sludge.Furthermore,it degrades slowly and can deteriorate methane yield during anaerobic...Polyacrylamide(PAM)is generally employed in wastewater treatment processes such as sludge dewatering and therefore exists in the sludge.Furthermore,it degrades slowly and can deteriorate methane yield during anaerobic digestion(AD).The impact or fate of PAM in AD under thermophilic conditions is still unclear.This study mainly focuses on PAM degradation and enhanced methane production from PAM-added sludge during 15 days of thermophilic(55°C)AD compared to mesophilic(35°C)AD.Sludge and PAM dose from 10 to 50 g/kg TSS were used.The results showed that PAM degraded by 76%to 78%with acrylamide(AM)content of 0.2 to 3.3 mg/L in thermophilic AD.However,it degraded only 21%to 30%with AM content of 0.5 to 7.2 mg/L in mesophilic AD.The methane yield was almost 230 to 238.4 mL/g VSS on the 8th day in thermophilic AD but was 115.2 to 128.6 mL/g VSS in mesophilic AD.Mechanism investigation revealed that thermophilic AD with continuous stirring not only enhanced PAM degradation but also boosted the organics release from the sludge with added PAM and gave higher methane yield than mesophilic AD.展开更多
基金The present work was supported by Key Program of the National Natural Science Foundation China(No.41773082,41573065)the National Key Research project on Water Environment Pollution Control in China(No.2017ZX07202002).
文摘Polyacrylamide(PAM)is generally employed in wastewater treatment processes such as sludge dewatering and therefore exists in the sludge.Furthermore,it degrades slowly and can deteriorate methane yield during anaerobic digestion(AD).The impact or fate of PAM in AD under thermophilic conditions is still unclear.This study mainly focuses on PAM degradation and enhanced methane production from PAM-added sludge during 15 days of thermophilic(55°C)AD compared to mesophilic(35°C)AD.Sludge and PAM dose from 10 to 50 g/kg TSS were used.The results showed that PAM degraded by 76%to 78%with acrylamide(AM)content of 0.2 to 3.3 mg/L in thermophilic AD.However,it degraded only 21%to 30%with AM content of 0.5 to 7.2 mg/L in mesophilic AD.The methane yield was almost 230 to 238.4 mL/g VSS on the 8th day in thermophilic AD but was 115.2 to 128.6 mL/g VSS in mesophilic AD.Mechanism investigation revealed that thermophilic AD with continuous stirring not only enhanced PAM degradation but also boosted the organics release from the sludge with added PAM and gave higher methane yield than mesophilic AD.