Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmissi...Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy(TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy(cryoEM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7A and enhancing its critical electron dose to around 20 e^(-)/A^(2). In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function(CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images.展开更多
The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The...The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.展开更多
In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfoni...In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.展开更多
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement...Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.展开更多
A new ternary compound,Mg_(11-x)Zn_(x)Sr in the Mg-Zn-Sr system was observed and studied using Scanning Electron Microscopy(SEM),Energy-Dispersive Spectroscope(EDS),X-Ray Diffraction(XRD)and Transmission Electron Micr...A new ternary compound,Mg_(11-x)Zn_(x)Sr in the Mg-Zn-Sr system was observed and studied using Scanning Electron Microscopy(SEM),Energy-Dispersive Spectroscope(EDS),X-Ray Diffraction(XRD)and Transmission Electron Microscopy(TEM).The XRD patterns were refined by the Rietveld refinement method and the results revealed that the crystallized Mg_(11-x)Zn_(x)Sr phase belonged to tetragonal I41/amd space group and had the Cd_(11)Ba prototype.The Mg atoms were successfully doped into Zn_(11)Sr crystal lattice by occupying Zn atomic sites.Moreover,the Rietveld refinement and computational results demonstrated a gradual decrease in the a-axis and c-axis lattice parameters with decreasing concentration levels of Mg coordination substitution in the lattice of Mg_(11-x)Zn_(x)Sr compound.The elastic constants and modulus of the Mg_(11-x)Zn_(x)Sr compounds calculated by first-principles calculations(FPC)indicated they were increased with the increasing of Zn content.The variation of hardness,D-band widths and the total density of states for Mg_(11-x)Zn_(x)Sr compounds with Zn content was discussed.展开更多
Based on the results of electron probe microanalysis(EPMA)and X-ray diffraction(XRD),the isothermal sections of Zr-Ni-Ge ternary system at 973 K and 1173 K were constructed through alloy sampling approach.It is worth ...Based on the results of electron probe microanalysis(EPMA)and X-ray diffraction(XRD),the isothermal sections of Zr-Ni-Ge ternary system at 973 K and 1173 K were constructed through alloy sampling approach.It is worth noting that the crystallographic information of the formerly reportedτ2(Zr_(0.98)NiGe_(2.94))was determined,which belongs to the space group Pbcm(No.57).Besides the formerly reported ternary compounds,τ1(Zr_(6)Ni_(16)Ge_(7)),τ_(2)(Zr_(0.98)NiGe_(2.94)),τ_(3)(Zr_(3)Ni_(4)Ge_(4)),τ_(4)(ZrNiGe)andτ_(5)(Zr_(2)Ni_(0.54)Ge_(0.46)),a new ternary phase namedτ_(6)with the composition of Zr_(39)Ni_(18)Ge_(43)was primarily detected in this work.In addition,an invariant reaction Ni_(5)Ge_(3)+τ_(4)τ_(1)+τ_(3)between 973 K and 1173 K was deduced.展开更多
To make inorganic structure data more useful for further studies a five-point list of simple procedures to be followed by authors of crystal structure papers is proposed. 1. A crystal structure should be described wit...To make inorganic structure data more useful for further studies a five-point list of simple procedures to be followed by authors of crystal structure papers is proposed. 1. A crystal structure should be described with the space group corresponding to its true symmetry. 2. A new structure proposal should be tested, if it is realistic in principle. 3. A structure should be described with a space group in a setting given in the International Tables. 4. For a comparison with other structures the structure data should be standardized with the program STRUCTURE TIDY. 5. 揘ew?structure data should be checked in the databases, Chemical Abstracts or on-line internet resources, if they are really new. The list is supplemented with many explanations, commentaries, examples and references.展开更多
The crystat structure of {[Er;(L—Glu);(H;O);](ClO;);·3H;O);has been studied by X-ray diffraction. The crystal is monoctinic with space group P2;and cell parameters a=19.987(3) , b=16.505(3) , c=11.040...The crystat structure of {[Er;(L—Glu);(H;O);](ClO;);·3H;O);has been studied by X-ray diffraction. The crystal is monoctinic with space group P2;and cell parameters a=19.987(3) , b=16.505(3) , c=11.040(2) , β=104.69(1);, V=3538(1) , Z=2, Dc=2.29 g. cm;, μ=53.2 cm;, F(000)=2384. The asymmetric unit contains two complex motecules and four centre ions. Each erbium (Ⅲ) is coordinated by five oxygen donors from four different glutamates and four oxygen donors from the aqua ligand to form a nine coordination potyhedron. The mean distances of Er—0 (carboxylate) and Er—Ow are 2.439 and 2.41 respectivety. The finat R and Rw are 0.043 and 0. 058, respectivety.展开更多
Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZS...Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZSM-5 zeolites can improve its diffusion property and decrease the coke formation. In this paper, nano-sized ZSM-5 zeolite with intercrystalline mesopores combining the mesoporous and nano sized structure was fabricated. For comparison, the mesoporous ZSM-5 and nano-sized ZSM-5 were also prepared. These catalyst samples were characterized by XRD, BET, NH3-TPD, TEM, Py-IR and TG techniques and used on the conversion of methanol to gasoline in a fixed-bed reactor at T=405 degrees C, WHSV =4.74 h(-1) and P=1.0 MPa. It was found that the external surface area of the nano-sized ZSM-5 zeolite with intercrystalline mesopores reached 104 m(2)/g, larger than that of mesoporous ZSM-5 (66 m(2)/g) and nano sized ZSM-5 (76 m(2)/g). Catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores was 93 h, which was only longer than that of mesoporous ZSM-5 (86 h), but shorter than that of nano sized ZSM-5 (104 h). Strong acidity promoted the coke formation and thus decreased the catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores though it presented large external surface that could improve the diffusion property. The special zeolite catalyst was further dealuminated to decrease the strong acidity. After this, its coke formation rate was slowed and catalytic lifetime was prolonged to 106 h because of the large external surface area and decreased weak acidity. This special structural zeolite is a potential catalyst for methanol to gasoline reaction. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH...New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.展开更多
The synthesis and X-ray crystal structure of a new molecular clip 2 was reported. It (C24H24N4O2, Mr = 400.47) crystallizes in the space group C2/c with a = 15.587(2), b = 8.5805(12), c = 15.259(2) A, β = 102...The synthesis and X-ray crystal structure of a new molecular clip 2 was reported. It (C24H24N4O2, Mr = 400.47) crystallizes in the space group C2/c with a = 15.587(2), b = 8.5805(12), c = 15.259(2) A, β = 102.448(3)°, V= 1992.9 (5)A63, Z = 4, Dc = 1.335 g/cm63,μ = 0.087 mm^-1 and F(000) = 848. It remains monomeric in the crystal and a tape-like structure is formed in the crystal structure of molecular clip. The most unusual structural feature of 2 is the boat conformation of its cyclohexyl ring imposed by the ring fusion at C(9)-C(9a).展开更多
The title compound 2-amino-3-ethoxycarbonyl-4-(4-chlorophenyl)-4H,5H-pyrano- [3,2-c]-benzopyran-5-one (C21H16ClNO5, Mr = 397.80) has been synthesized and characterized by X-ray crystallography. It crystallizes in tric...The title compound 2-amino-3-ethoxycarbonyl-4-(4-chlorophenyl)-4H,5H-pyrano- [3,2-c]-benzopyran-5-one (C21H16ClNO5, Mr = 397.80) has been synthesized and characterized by X-ray crystallography. It crystallizes in triclinic, space group P1 with a = 5.756(1), b = 10.099(1), c = 17.106(3) ? a = 80.49(1), b = 83.13(1), g = 80.07(1), V = 961.8(2) ?, Dc = 1.374 g/cm3, = 0.231 mm-1, Z = 2, F(000) = 412, the final R = 0.0369 and wR = 0.0947. In the molecule the pyran ring is of boat conformation. The intermolecular hydrogen bonds of NH…O(5)(x+2, y+1, z+1) and NH…Cl (x+1, y1, z) as well as intramolecular hydrogen bond NH…O(5) are found.展开更多
A new coordination compound Zn(2,4'-bpt)2(H2O)(1) based on the versatile ligand 2,4'-Hbpt(2,4?-Hbpt = 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole) was prepared by hydrothermal reactions. The structure...A new coordination compound Zn(2,4'-bpt)2(H2O)(1) based on the versatile ligand 2,4'-Hbpt(2,4?-Hbpt = 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole) was prepared by hydrothermal reactions. The structure of complex 1 has been characterized by X-ray single-crystal diffraction, elemental analysis, X-ray powder diffraction, IR spectrum analysis and thermogravimetric analysis. Single-crystal X-ray diffraction analysis indicates that the complex belongs to monoclinic system, space group C2/c with a = 23.877(3), b = 0.7483(9), c = 1.2492(2) A, b = 92.681(2)°, V = 2230.6(4) A^3, Z = 4, Dc = 1.572 g/cm^3, m = 1.143 mm^-1, Mr = 527.85 and F(000) = 1080. The final R = 0.0581 and wR = 0.0898 with I 〉 2s(I). 1 is a 0D motif which is connected by hydrogen bonds to form a corrugated 1D pattern. In addition, 1 shows strong photoluminescent emissions in the solid state at room temperature which can be used as potential optical materials. Theoretical calculations based on density functional theory(DFT) were employed in order to explicate the stability and chemical reactivity of 2,4'-Hbpt with different conformations. The results indicated that conformation I is more stable and prior to coordination in the reactions.展开更多
The reaction of flexible bis(imidazole) ligand and 1,2-bis(imidazol-l'-yl)methane (bimm) with Co(Ⅱ) salt under ionothermal method resulted in the formation of a new coordination polymer {[Co(bimm)3]·...The reaction of flexible bis(imidazole) ligand and 1,2-bis(imidazol-l'-yl)methane (bimm) with Co(Ⅱ) salt under ionothermal method resulted in the formation of a new coordination polymer {[Co(bimm)3]·(PF6)2}n (1). X-ray single-crystal diffraction determination reveals that 1 crystallizes in the triclinic Pi space group, with α = 8.647(6), b = 12.092(9), c = 14.967(1 l) A, α = 88.912(8), β = 81.199(8), ), = 89.395(8)°, V= 1546 (2) A3, Z = 2, Mr = 793.39, Dc= 1.704 Mg/m3,μ = 0.768 mm-1 F(000) = 798, the final R = 0.0626 and wR = 0.1634 for 4319 observed reflections with I〉 2σ(I). In compound 1, the Co(lI) ion is connected to another Co(ll) by two bimm ligands to form 1D double chains which are further linked by bimm ligands to form a 2D wavelike layer. Topologically, the structure of 1 represents a uninodal 2D 4-connected sq1/Shubnikov tetragonal plane net. Moreover, thermogravimetric analyses and photocatalytic property for 1 have also been investigated.展开更多
A new uranium(Ⅵ)-polycarboxylate framework with honeycomb(6,3) nets {[Zn(phen)_2(H_2O)_2][(UO_2)_2(BDC)_3]·2H_2O}n(1, BDC = benzene-1,4-dicarboxylate) was hydrotherrmally synthesized by the reactio...A new uranium(Ⅵ)-polycarboxylate framework with honeycomb(6,3) nets {[Zn(phen)_2(H_2O)_2][(UO_2)_2(BDC)_3]·2H_2O}n(1, BDC = benzene-1,4-dicarboxylate) was hydrotherrmally synthesized by the reactions of Zn(NO_3)_2·6H_2O with phenanthroine, UO_2(NO_3)_2·6H_2O and benzene-1,4-dicarboxylate. The complex was structurally characterized by FT-IR spectroscopy, powder XRD and X-ray single-crystal diffraction. Crystal data for 1: monoclinic, space group Cc with M_r = 1522.19, a = 14.9385(10), b = 20.4922(13), c = 15.9728(10) ?, β = 100.1240(10)°, V = 4813.5(5) ?~3, Z = 4, D_c = 2.100 g?cm^(–3), μ = 7.293 mm^(–1), F(000) = 2872, the final R = 0.0224 and w R= 0.0677 for 6522 observed reflections with I 〉 2σ(I). Hydrogen bonds and π-π stacking interactions contribute to the structural extension and stabilization. Experimental band gap of about 3.57 e V indicates its broad gap semiconductor nature. UV-Vis spectra and solid-state luminescence were discussed in detail. The compound exhibits photocatalytic activities for the degradation of rhodamine B.展开更多
Compounds 1 (C15H17C1F3N303, Mr = 379) and 2 (C14H14C1F3N4OS, Mr = 378) have been synthesized and their crystal structures were determined by single-crystal X-ray diffraction. Crystal 1 belongs to the triclinic sy...Compounds 1 (C15H17C1F3N303, Mr = 379) and 2 (C14H14C1F3N4OS, Mr = 378) have been synthesized and their crystal structures were determined by single-crystal X-ray diffraction. Crystal 1 belongs to the triclinic system, space group P1 with a = 6.0223(19), b = 9.324(3), c = 15.936(5) A, a = 80.687(5), β= 87.289(5), ), = 86.097(5)°, V= 880.4(5) A3, Z = 2, Dc = 1.433 g/cm3,μ(MoKa) = 0.266 mm^-1, F(000) = 392, R = 0.0861 and wR = 0.1999 for 2022 observed reflections with I 〉 2o(/). Crystal 2 belongs to the triclinic system, space group PI with a = 7.7029(15), b = 8.3371(16), c = 14.410(3) A, a = 100.672(3), β= 103.168(3), ? = 98.726(3)°, V = 876.1(3) A3, Z = 2, Dc= 1.451 g/cm^3,μ(MoKa) = 0.379 mm^-1, F(000) = 388, R = 0.0672 and wR = 0.2105 for 2725 observed reflections with I 〉 2σ(I). Although the two compounds are similar with the same pyrazole and pyrethroid units, X-ray analysis reveals that their structures are completely different.展开更多
A new coordination polymer, [Cd2(NIPH)(L)2(H2O)]n(1, HL = 3-(2-pyridyl)pyrazole and H2NIPH = 5-nitroisophthalic acid), has been synthesized. The structure of complex 1 has been characterized by X-ray single-...A new coordination polymer, [Cd2(NIPH)(L)2(H2O)]n(1, HL = 3-(2-pyridyl)pyrazole and H2NIPH = 5-nitroisophthalic acid), has been synthesized. The structure of complex 1 has been characterized by X-ray single-crystal diffraction, elemental analysis, IR spectrum analysis, thermogravimetric analysis and fluorescence spectrum analysis. Complex 1 belongs to the triclinic system, space group P1 with a = 8.9539(6), b = 11.6252(8), c = 12.2472(8) A^°, α = 80.011(2), β = 80.3850(10), γ = 86.773(2)°, V = 1237.37(14) A^°3, Z = 2, Dc = 1.987 g/cm^3, μ = 1.780 mm^-1, Mr = 740.25, F(000) = 724, the final R = 0.0295 and wR = 0.1015 with I 〉 2σ(I). Two H2NIPH as monodentate and bidentate ligands and two L ligands link four Cd(Ⅱ) ions to form a tetranuclear subunit. Each pair of the tetranuclear subunits is bridged by NIPH ligands to yield a one-dimensional double-chain structure. Furthermore, the 1D chains are linked into a 3D supramolecular framework with hydrogen bonds and π-π interactions. In addition, we analyzed Natural Bond Orbital(NBO) in using the PBE0/LANL2DZ method built in Gaussian 03 Program. The calculation results indicated the obvious covalent interaction between the coordinated atoms and Cd(Ⅱ) ion.展开更多
A series of acridine-1,2,3-triazole derivatives were designed, synthesized and characterized by NMR. 1-(2-methylacridinyl)-4-(4-methyl phenyl)-1,2,3-triazole(4f), C_(23)H_(18)N_4, was structurally determined...A series of acridine-1,2,3-triazole derivatives were designed, synthesized and characterized by NMR. 1-(2-methylacridinyl)-4-(4-methyl phenyl)-1,2,3-triazole(4f), C_(23)H_(18)N_4, was structurally determined by single-crystal X-ray diffraction. It crystallizes in the triclinic system, space group P1 with a = 9.585(4), b = 9.684(4), c = 11.339(5) A, β = 88.250(7)o, V = 925.3(6), Z = 2, D_c = 1.258 g/cm^3, F(000) = 368, μ = 0.077 mm^(-1), the final R = 0.0808 and wR = 0.2218 for 3386 observed reflections(I 〉 2σ(I)). X-ray analysis indicates that the acridine ring is almost vertical to triazole ring with the dihedral angle nearly to be 75°. The crystal packing of the compound is stabilized mainly by π-π interaction. The preliminary biological tests display that some of the title compounds possess a good anti-tumour activity against MGC-803 and T24.展开更多
A novel pyrazine-2,3-dicarboxylic acid bridged Co(II) phen complex 2 ∞ [Co- ...A novel pyrazine-2,3-dicarboxylic acid bridged Co(II) phen complex 2 ∞ [Co- (phen)(μ-L)3/3]?H2O (H2L = pyrazine-2,3-dicarboxylic acid) has been hydrothermally synthesized, and X-ray single-crystal diffraction analysis shows that it crystallizes in the monoclinic system, space group P21/n with a = 11.480(2), b = 11.885(2), c = 12.939(3) ?, β = 110.55(3)°, V = 1653.1(6) ?3, Mr = 423.25, Dc = 0.425 g/cm3, Z = 4, R = 0.0361 and wR = 0.1011. The title complex consists of 2D 2 ∞ [Co(phen)(μ-L)3/3] layers and crystal water molecules. Each Co atom is octahedrally coordinated by three N atoms and three O atoms to form 2D 2 ∞ [Co(phen)(μ-L)3/3] polymeric layers. Furthermore, such 2D layers are stacked into 3D supramolecular frameworks via Van der Waals’ intermolecular forces, strong and weak hydrogen-bond interactions. The coordination phen and crystal water molecules are resided into cavities of the frameworks.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074409 and 12374021)。
文摘Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy(TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy(cryoEM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7A and enhancing its critical electron dose to around 20 e^(-)/A^(2). In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function(CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images.
文摘The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.
文摘In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.
基金supported financially by the National Key R&D Program of China (Nos. 2018YFA0208501 and 2018YFA0703200)the National Natural Science Foundation of China (NSFC, Nos. 52103236, 91963212, 21875260)Beijing National Laboratory for Molecular Sciences (No. BNLMSCXXM-202005)。
文摘Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
基金the National Key Research and Development Program of China(grant numbers 2018YFC1106702)the Natural Science Foundation of Guangdong Province,China(grant numbers 2020A1515011301,2018A0303100018 and 2018A030313950)+1 种基金Shenzhen Basic Research Project(grant numbers JCYJ20170815153143221,JCYJ20200109144608205 and JCYJ20170815153210359)IER Foundation(HT-JD-CXY-201902 and HT-JD-CXY201907)for financial support
文摘A new ternary compound,Mg_(11-x)Zn_(x)Sr in the Mg-Zn-Sr system was observed and studied using Scanning Electron Microscopy(SEM),Energy-Dispersive Spectroscope(EDS),X-Ray Diffraction(XRD)and Transmission Electron Microscopy(TEM).The XRD patterns were refined by the Rietveld refinement method and the results revealed that the crystallized Mg_(11-x)Zn_(x)Sr phase belonged to tetragonal I41/amd space group and had the Cd_(11)Ba prototype.The Mg atoms were successfully doped into Zn_(11)Sr crystal lattice by occupying Zn atomic sites.Moreover,the Rietveld refinement and computational results demonstrated a gradual decrease in the a-axis and c-axis lattice parameters with decreasing concentration levels of Mg coordination substitution in the lattice of Mg_(11-x)Zn_(x)Sr compound.The elastic constants and modulus of the Mg_(11-x)Zn_(x)Sr compounds calculated by first-principles calculations(FPC)indicated they were increased with the increasing of Zn content.The variation of hardness,D-band widths and the total density of states for Mg_(11-x)Zn_(x)Sr compounds with Zn content was discussed.
基金Sponsored by the Major State Basic Research Development Program of China(Grant No.2014CB6644002).
文摘Based on the results of electron probe microanalysis(EPMA)and X-ray diffraction(XRD),the isothermal sections of Zr-Ni-Ge ternary system at 973 K and 1173 K were constructed through alloy sampling approach.It is worth noting that the crystallographic information of the formerly reportedτ2(Zr_(0.98)NiGe_(2.94))was determined,which belongs to the space group Pbcm(No.57).Besides the formerly reported ternary compounds,τ1(Zr_(6)Ni_(16)Ge_(7)),τ_(2)(Zr_(0.98)NiGe_(2.94)),τ_(3)(Zr_(3)Ni_(4)Ge_(4)),τ_(4)(ZrNiGe)andτ_(5)(Zr_(2)Ni_(0.54)Ge_(0.46)),a new ternary phase namedτ_(6)with the composition of Zr_(39)Ni_(18)Ge_(43)was primarily detected in this work.In addition,an invariant reaction Ni_(5)Ge_(3)+τ_(4)τ_(1)+τ_(3)between 973 K and 1173 K was deduced.
文摘To make inorganic structure data more useful for further studies a five-point list of simple procedures to be followed by authors of crystal structure papers is proposed. 1. A crystal structure should be described with the space group corresponding to its true symmetry. 2. A new structure proposal should be tested, if it is realistic in principle. 3. A structure should be described with a space group in a setting given in the International Tables. 4. For a comparison with other structures the structure data should be standardized with the program STRUCTURE TIDY. 5. 揘ew?structure data should be checked in the databases, Chemical Abstracts or on-line internet resources, if they are really new. The list is supplemented with many explanations, commentaries, examples and references.
文摘The crystat structure of {[Er;(L—Glu);(H;O);](ClO;);·3H;O);has been studied by X-ray diffraction. The crystal is monoctinic with space group P2;and cell parameters a=19.987(3) , b=16.505(3) , c=11.040(2) , β=104.69(1);, V=3538(1) , Z=2, Dc=2.29 g. cm;, μ=53.2 cm;, F(000)=2384. The asymmetric unit contains two complex motecules and four centre ions. Each erbium (Ⅲ) is coordinated by five oxygen donors from four different glutamates and four oxygen donors from the aqua ligand to form a nine coordination potyhedron. The mean distances of Er—0 (carboxylate) and Er—Ow are 2.439 and 2.41 respectivety. The finat R and Rw are 0.043 and 0. 058, respectivety.
基金the Science and Technology Foundation Platform Construction Project of Shanxi Province(No.2015091009)the National Science Foundation for Young Scientists of China(No.21606160)+1 种基金the Qualified Personnel Foundation of Taiyuan University of Technology(No.tyut-rc201454a)School Fund of Taiyuan University of Technology(Nos.1205-04020202 and 1205-04020102)
文摘Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZSM-5 zeolites can improve its diffusion property and decrease the coke formation. In this paper, nano-sized ZSM-5 zeolite with intercrystalline mesopores combining the mesoporous and nano sized structure was fabricated. For comparison, the mesoporous ZSM-5 and nano-sized ZSM-5 were also prepared. These catalyst samples were characterized by XRD, BET, NH3-TPD, TEM, Py-IR and TG techniques and used on the conversion of methanol to gasoline in a fixed-bed reactor at T=405 degrees C, WHSV =4.74 h(-1) and P=1.0 MPa. It was found that the external surface area of the nano-sized ZSM-5 zeolite with intercrystalline mesopores reached 104 m(2)/g, larger than that of mesoporous ZSM-5 (66 m(2)/g) and nano sized ZSM-5 (76 m(2)/g). Catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores was 93 h, which was only longer than that of mesoporous ZSM-5 (86 h), but shorter than that of nano sized ZSM-5 (104 h). Strong acidity promoted the coke formation and thus decreased the catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores though it presented large external surface that could improve the diffusion property. The special zeolite catalyst was further dealuminated to decrease the strong acidity. After this, its coke formation rate was slowed and catalytic lifetime was prolonged to 106 h because of the large external surface area and decreased weak acidity. This special structural zeolite is a potential catalyst for methanol to gasoline reaction. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.
基金the National Natural Science Foundation of China (20672042)
文摘The synthesis and X-ray crystal structure of a new molecular clip 2 was reported. It (C24H24N4O2, Mr = 400.47) crystallizes in the space group C2/c with a = 15.587(2), b = 8.5805(12), c = 15.259(2) A, β = 102.448(3)°, V= 1992.9 (5)A63, Z = 4, Dc = 1.335 g/cm63,μ = 0.087 mm^-1 and F(000) = 848. It remains monomeric in the crystal and a tape-like structure is formed in the crystal structure of molecular clip. The most unusual structural feature of 2 is the boat conformation of its cyclohexyl ring imposed by the ring fusion at C(9)-C(9a).
基金Supported by NNSFC (No. 20372057) NSF of Jiangsu Province (No. BK2001142) Jiangsu Education Department (No. 01KJB150008) and the Key Lab of Biotechnology for Medicinal Plants of Jiangsu Province (02AXL 14)
文摘The title compound 2-amino-3-ethoxycarbonyl-4-(4-chlorophenyl)-4H,5H-pyrano- [3,2-c]-benzopyran-5-one (C21H16ClNO5, Mr = 397.80) has been synthesized and characterized by X-ray crystallography. It crystallizes in triclinic, space group P1 with a = 5.756(1), b = 10.099(1), c = 17.106(3) ? a = 80.49(1), b = 83.13(1), g = 80.07(1), V = 961.8(2) ?, Dc = 1.374 g/cm3, = 0.231 mm-1, Z = 2, F(000) = 412, the final R = 0.0369 and wR = 0.0947. In the molecule the pyran ring is of boat conformation. The intermolecular hydrogen bonds of NH…O(5)(x+2, y+1, z+1) and NH…Cl (x+1, y1, z) as well as intramolecular hydrogen bond NH…O(5) are found.
基金Supported by the National Natural Science Foundation of China(Nos.21263019 and 51364038)
文摘A new coordination compound Zn(2,4'-bpt)2(H2O)(1) based on the versatile ligand 2,4'-Hbpt(2,4?-Hbpt = 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole) was prepared by hydrothermal reactions. The structure of complex 1 has been characterized by X-ray single-crystal diffraction, elemental analysis, X-ray powder diffraction, IR spectrum analysis and thermogravimetric analysis. Single-crystal X-ray diffraction analysis indicates that the complex belongs to monoclinic system, space group C2/c with a = 23.877(3), b = 0.7483(9), c = 1.2492(2) A, b = 92.681(2)°, V = 2230.6(4) A^3, Z = 4, Dc = 1.572 g/cm^3, m = 1.143 mm^-1, Mr = 527.85 and F(000) = 1080. The final R = 0.0581 and wR = 0.0898 with I 〉 2s(I). 1 is a 0D motif which is connected by hydrogen bonds to form a corrugated 1D pattern. In addition, 1 shows strong photoluminescent emissions in the solid state at room temperature which can be used as potential optical materials. Theoretical calculations based on density functional theory(DFT) were employed in order to explicate the stability and chemical reactivity of 2,4'-Hbpt with different conformations. The results indicated that conformation I is more stable and prior to coordination in the reactions.
基金Supported by the National Natural Science Foundation of China(No.21576112)Natural Science Foundation Project of Jilin Province(No.20130521019JH and 20150623024TC-19)+1 种基金Natural Science Foundation Project of the Education Department of Jilin Province(No.[2014]152)the Science and Technology Development Plan of Siping City(2015049)
文摘Three lanthanide(III) complexes [Ln(4-NCP)(1,4-BDC)]n·xn H2O(Ln = Pr(1), Sm(2), Nd(3). 4-HNCP = 2-(4-carboxyphenyl)imidazo(4,5-f)(1,10)phenanthroline, 1,4-H2 BDC = benzene-1,4-dicarboxylic acid) have been hydrothermally synthesized and characterized via elemental analysis, infrared spectrometry and single-crystal X-ray diffraction. Structural analyses revealed that complexes 1~3 possess similar porous three-dimensional frameworks with the point symbol {4^(12)·6~3}. Meanwhile, complexes 1~3 exhibit excellent thermal stabilities and complex 2 exhibits characteristic luminescent property.
基金supported by the Natural Science Foundation of Henan Province(132300410326)the Foundation of the Education Department of Henan Province(13A150801 and 14A150040)
文摘The reaction of flexible bis(imidazole) ligand and 1,2-bis(imidazol-l'-yl)methane (bimm) with Co(Ⅱ) salt under ionothermal method resulted in the formation of a new coordination polymer {[Co(bimm)3]·(PF6)2}n (1). X-ray single-crystal diffraction determination reveals that 1 crystallizes in the triclinic Pi space group, with α = 8.647(6), b = 12.092(9), c = 14.967(1 l) A, α = 88.912(8), β = 81.199(8), ), = 89.395(8)°, V= 1546 (2) A3, Z = 2, Mr = 793.39, Dc= 1.704 Mg/m3,μ = 0.768 mm-1 F(000) = 798, the final R = 0.0626 and wR = 0.1634 for 4319 observed reflections with I〉 2σ(I). In compound 1, the Co(lI) ion is connected to another Co(ll) by two bimm ligands to form 1D double chains which are further linked by bimm ligands to form a 2D wavelike layer. Topologically, the structure of 1 represents a uninodal 2D 4-connected sq1/Shubnikov tetragonal plane net. Moreover, thermogravimetric analyses and photocatalytic property for 1 have also been investigated.
基金Financial supports received from the scientific research foundation of Sanming University(No.B201406/Q)Education Scientific Research Project of Fujian Province(No.JA15480)
文摘A new uranium(Ⅵ)-polycarboxylate framework with honeycomb(6,3) nets {[Zn(phen)_2(H_2O)_2][(UO_2)_2(BDC)_3]·2H_2O}n(1, BDC = benzene-1,4-dicarboxylate) was hydrotherrmally synthesized by the reactions of Zn(NO_3)_2·6H_2O with phenanthroine, UO_2(NO_3)_2·6H_2O and benzene-1,4-dicarboxylate. The complex was structurally characterized by FT-IR spectroscopy, powder XRD and X-ray single-crystal diffraction. Crystal data for 1: monoclinic, space group Cc with M_r = 1522.19, a = 14.9385(10), b = 20.4922(13), c = 15.9728(10) ?, β = 100.1240(10)°, V = 4813.5(5) ?~3, Z = 4, D_c = 2.100 g?cm^(–3), μ = 7.293 mm^(–1), F(000) = 2872, the final R = 0.0224 and w R= 0.0677 for 6522 observed reflections with I 〉 2σ(I). Hydrogen bonds and π-π stacking interactions contribute to the structural extension and stabilization. Experimental band gap of about 3.57 e V indicates its broad gap semiconductor nature. UV-Vis spectra and solid-state luminescence were discussed in detail. The compound exhibits photocatalytic activities for the degradation of rhodamine B.
基金supported by Hubei University of Technology,Science and Technology Department of Hubei Province(No.ZRY0981)National Natural Science Foundation of China(No.21272086)
文摘Compounds 1 (C15H17C1F3N303, Mr = 379) and 2 (C14H14C1F3N4OS, Mr = 378) have been synthesized and their crystal structures were determined by single-crystal X-ray diffraction. Crystal 1 belongs to the triclinic system, space group P1 with a = 6.0223(19), b = 9.324(3), c = 15.936(5) A, a = 80.687(5), β= 87.289(5), ), = 86.097(5)°, V= 880.4(5) A3, Z = 2, Dc = 1.433 g/cm3,μ(MoKa) = 0.266 mm^-1, F(000) = 392, R = 0.0861 and wR = 0.1999 for 2022 observed reflections with I 〉 2o(/). Crystal 2 belongs to the triclinic system, space group PI with a = 7.7029(15), b = 8.3371(16), c = 14.410(3) A, a = 100.672(3), β= 103.168(3), ? = 98.726(3)°, V = 876.1(3) A3, Z = 2, Dc= 1.451 g/cm^3,μ(MoKa) = 0.379 mm^-1, F(000) = 388, R = 0.0672 and wR = 0.2105 for 2725 observed reflections with I 〉 2σ(I). Although the two compounds are similar with the same pyrazole and pyrethroid units, X-ray analysis reveals that their structures are completely different.
基金supported by the Science and Technology Development Project of Jilin Provincial Science&Technology Department(201205080)the Science and Technology Research Projects of the Education Office of Jilin Province(No.2013.384)
文摘A new coordination polymer, [Cd2(NIPH)(L)2(H2O)]n(1, HL = 3-(2-pyridyl)pyrazole and H2NIPH = 5-nitroisophthalic acid), has been synthesized. The structure of complex 1 has been characterized by X-ray single-crystal diffraction, elemental analysis, IR spectrum analysis, thermogravimetric analysis and fluorescence spectrum analysis. Complex 1 belongs to the triclinic system, space group P1 with a = 8.9539(6), b = 11.6252(8), c = 12.2472(8) A^°, α = 80.011(2), β = 80.3850(10), γ = 86.773(2)°, V = 1237.37(14) A^°3, Z = 2, Dc = 1.987 g/cm^3, μ = 1.780 mm^-1, Mr = 740.25, F(000) = 724, the final R = 0.0295 and wR = 0.1015 with I 〉 2σ(I). Two H2NIPH as monodentate and bidentate ligands and two L ligands link four Cd(Ⅱ) ions to form a tetranuclear subunit. Each pair of the tetranuclear subunits is bridged by NIPH ligands to yield a one-dimensional double-chain structure. Furthermore, the 1D chains are linked into a 3D supramolecular framework with hydrogen bonds and π-π interactions. In addition, we analyzed Natural Bond Orbital(NBO) in using the PBE0/LANL2DZ method built in Gaussian 03 Program. The calculation results indicated the obvious covalent interaction between the coordinated atoms and Cd(Ⅱ) ion.
基金Supported by the National Natural Science Foundation of China(No.51263002)Natural Science Foundation of Guangxi Province(No.2014GXNSFBA118182)+3 种基金the Scientific Research Fund of Guangxi Provincial Education Department(No.YB2014181)the Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources(Guangxi Normal University)Ministry of Education of China(CMEMR2015-B04)the Scientific Research Fund of Guangxi University of Chinese Medicine(No.QN14017,2015MS003)
文摘A series of acridine-1,2,3-triazole derivatives were designed, synthesized and characterized by NMR. 1-(2-methylacridinyl)-4-(4-methyl phenyl)-1,2,3-triazole(4f), C_(23)H_(18)N_4, was structurally determined by single-crystal X-ray diffraction. It crystallizes in the triclinic system, space group P1 with a = 9.585(4), b = 9.684(4), c = 11.339(5) A, β = 88.250(7)o, V = 925.3(6), Z = 2, D_c = 1.258 g/cm^3, F(000) = 368, μ = 0.077 mm^(-1), the final R = 0.0808 and wR = 0.2218 for 3386 observed reflections(I 〉 2σ(I)). X-ray analysis indicates that the acridine ring is almost vertical to triazole ring with the dihedral angle nearly to be 75°. The crystal packing of the compound is stabilized mainly by π-π interaction. The preliminary biological tests display that some of the title compounds possess a good anti-tumour activity against MGC-803 and T24.
基金This work was supported by the Science and Technology Bureau of Jinhua City (No 2003-01-179)
文摘A novel pyrazine-2,3-dicarboxylic acid bridged Co(II) phen complex 2 ∞ [Co- (phen)(μ-L)3/3]?H2O (H2L = pyrazine-2,3-dicarboxylic acid) has been hydrothermally synthesized, and X-ray single-crystal diffraction analysis shows that it crystallizes in the monoclinic system, space group P21/n with a = 11.480(2), b = 11.885(2), c = 12.939(3) ?, β = 110.55(3)°, V = 1653.1(6) ?3, Mr = 423.25, Dc = 0.425 g/cm3, Z = 4, R = 0.0361 and wR = 0.1011. The title complex consists of 2D 2 ∞ [Co(phen)(μ-L)3/3] layers and crystal water molecules. Each Co atom is octahedrally coordinated by three N atoms and three O atoms to form 2D 2 ∞ [Co(phen)(μ-L)3/3] polymeric layers. Furthermore, such 2D layers are stacked into 3D supramolecular frameworks via Van der Waals’ intermolecular forces, strong and weak hydrogen-bond interactions. The coordination phen and crystal water molecules are resided into cavities of the frameworks.