Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c...Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.展开更多
To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environment...To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.展开更多
Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint...Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.展开更多
The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane‐rich biogas. However, digested sludge, the residue produced in that process...The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane‐rich biogas. However, digested sludge, the residue produced in that process, still contains high levels of heavy metals and other harmful substances that might make traditional disposal difficult. We have devised a facile method of converting digested sludge into a mesoporous material that acts as an effective and stable heterogeneous catalyst for the photo‐Fenton reaction. A comparison of the removal of rhodamine B under different conditions showed that FAS‐1‐350, which was synthesized by mixing the digested sludge with a 1 mol/L(NH4)2Fe(SO4)2 solution followed by calcination at 350 °C, exhibited the best catalytic activity owing to its faster reaction rate and lower degree of Fe leaching. The results indicate that Fe^(2+)‐loaded catalysts have significant potential to act as stable and efficient heterogeneous promoters for the photo‐Fenton reaction, with better performance than Fe^3+‐loaded catalysts because the Fe(II)/Fe(III)compounds formed in the calcination process are necessary to sustain the Fenton reaction. This protocol provides an alternative, environmentally friendly method of reusing digested sludge and demonstrates an easily synthesized mesoporous material that effectively degrades azo dyes.展开更多
A series of lanthanum doped meosoporous MCM-41 (LaxM41, x is Si/La molar ratio) was prepared by sol-gel method. The surface structure of the materials was investigated with X-ray diffraction and N2 adsorption/desorp...A series of lanthanum doped meosoporous MCM-41 (LaxM41, x is Si/La molar ratio) was prepared by sol-gel method. The surface structure of the materials was investigated with X-ray diffraction and N2 adsorption/desorption technique. The content of La in the materials was determined by ICE It was found that the La content of La25M41, La50M41 and La100M41 was 7.53%, 3.89% and 2.32%, respectively. The phosphate adsorption capacities increased with increasing amount of La incorporation. With 0.40 g La25M41 99.7% phosphate could be removed. The effects of Si/La molar ratio, LaxM41 dose, pH, initial concentration of phosphate solution, co-ions on phosphate adsorption were also evaluated. The phosphate adsorption kinetics of LaxM41 could be well-described by the pseudo second-order model, and Langmuir isotherm fit equilibrium data much better than the Freundlich isotherm.展开更多
Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the fram...Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the framework under hydrothermal conditions. The structure and the state of La or Ce were investigated through the analyses of XRD, nitrogen adsorption-desorption, FT-IR, and UV-Vis. XRD and N2 adsorption-desorption results showed that Ln-MCM-41 exhibited the loss of the lattice ordering of the MCM-41 construct, and larger unit cell parameter and pore diameter than pure silica MCM-41. The FT-IR and UV-Vis results indicated the presence of isolated tetra-coordinated La or Ce ions in the framework and other Ln species dispersed highly on the Ln-MCM-41 surface simultaneously. Furthermore, their catalytic behaviors in the oxidation of styrene were studied using H2O2 as the oxidant. The La-MCM-41 catalysts exhibited high reactivity and the reactivity increased with the increase of the La content in the La-MCM-41 samples. On the contrary, Ce-MCM-41 catalysts showed low reactivity in the oxidation of styrene and the conversion of styrene decreased with the increase of the Ce content in the Ce-MCM-41 samples.展开更多
Although hydrotalcite, or layered double hydroxides (LDHs), is not a common mineral, it is an important material that can be easily synthesized in laboratory. In this study, structural evolvement and BET surface are...Although hydrotalcite, or layered double hydroxides (LDHs), is not a common mineral, it is an important material that can be easily synthesized in laboratory. In this study, structural evolvement and BET surface area changes of heat treated Mg/AI-LDH is evaluated by XRD, TEM and N2-BET analyses. The results indicate that the magnesium-aluminum LDH with carbonate as interlayer anion, periclase-like oxides was formed at temperatures of 400-800℃. Meanwhile, 2-3 nanometer mesoporous were formed during decomposition of LDH. However, the heat treated samples still preserve the morphology of the original LDH plates. Periclase-like formed from LDH heat treatment may re-hydrolyze and recover the structure of LDH. However, crystallinity of the recovered LDH is lower than that of the original LDH. This heat treatment will result in formation of (Mg, Al)-oxide nano-crystals and nanopores among the nano-crystals. When heating temperature exceeds 1000, the periclase-like (Mg, Al)-oxide is transformed into a composite with periclase (MgO) and spinel phases. The periclase can be re-hydrolyzed and dissolved in HCl solution. After acid treatment, the sample with a high surface area is composed of spinel nano-crystals and nanopores among them. Our results will provide a new and economic way to synthesize mesoporous materials through pathways of phase transformation of precursor materials with different composition.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
Two kinds of bi-functional transition metal doped mesoporous materials(Fe-HMS and Fe-MCM-41) are prepared using one-step hydrothermal method and then treated with hydrochloric acid ethanol solution.The N2 adsorption a...Two kinds of bi-functional transition metal doped mesoporous materials(Fe-HMS and Fe-MCM-41) are prepared using one-step hydrothermal method and then treated with hydrochloric acid ethanol solution.The N2 adsorption and HRTEM results show that both of Fe-HMS and Fe-MCM-41 possess mesoporous structure. The UV–vis results suggest that the Fe species are mainly located within the framework. The basicity of as-prepared samples was studied by temperature programmed desorption using CO2 as probe molecule(CO2-TPD). The catalytic performance of Fe-HMS and Fe-MCM-41 in CO2 cycloaddition largely depends on the amount of the accessible basic sites. The acid–base active sites, framework Fe and PDDA species cooperatively catalyze the CO2 cycloaddition for the production of cyclic carbonates under the condition without any co-catalyst. The conversion of epichlorohydrin(ECH) is 97.4% and the selectivity of chloropropene carbonate is 92.9% under optimal conditions. The approximate rate constant of cycloaddition reaction of CO2 with ECH under optimum reaction temperature is calculated. It is worth noting that the Fe-HMS material shows superior reusability than Fe-MCM-41. In addition, this work provides a facile way on the synthesis of bi-functional acid–base heterogeneous catalyst with outstanding catalytic performance for the fixation of CO2.展开更多
Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-contai...Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.展开更多
We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials ca...We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials; which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials.展开更多
FeF3·0.33H2O crystallizes in hexagonal tungsten bronze structure with more opened hexagonal cavities are considered as next generation electrode materials of both lithium ion battery and sodium ion battery.In thi...FeF3·0.33H2O crystallizes in hexagonal tungsten bronze structure with more opened hexagonal cavities are considered as next generation electrode materials of both lithium ion battery and sodium ion battery.In this paper the mesoporous spherical FeF3·0.33H2O/MWCNTs nanocomposite was successfully synthesized via a one-step solvothermal approach. Galvanostatic measurement showed that the performances of sodium ion batteries(SIBs) using FeF3·0.33H2O/MWCNTs as cathode material were highly dependent on the morphology and size of the as-prepared materials. Benefitting from the special mesoporous structure features, FeF3·0.33H2O/MWCNTs nanocomposite exhibits much better electrochemical performances in terms of initial discharge capacity(350.4 mAh g-1) and cycle performance(123.5 mAh g-1 after 50 cycles at 0.1 C range from 1.0 V to 4.0 V) as well as rate capacity(123.8 mAh g-1 after 25 cycles back to 0.1 C). The excellent electrochemical performance enhancement can be attributed to the synergistic effect of the mesoporous structure and the MWCNTs conductive network, which can effectively increase the contact area between the active materials and the electrolyte, shorten the Na+ diffusion pathway,buffer the volume change during cycling/discharge process and improve the structure stability of the FeF3·0.33H2O/MWCNTs nanocomposite.展开更多
The mesoporous Al-SBA-15 zeolite was obtained via impregnation of pure silica-based SBA-15 zeolite with aluminum nitrate.The Al-SBA-15 sample was calcined in air at 800 ℃ for 6 h and hydrothermally treated at near 1...The mesoporous Al-SBA-15 zeolite was obtained via impregnation of pure silica-based SBA-15 zeolite with aluminum nitrate.The Al-SBA-15 sample was calcined in air at 800 ℃ for 6 h and hydrothermally treated at near 100 ℃ for 120 h,respectively,and then the thermal and hydrothermal stability of Al-SBA-15 sample was investigated by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and nitrogen adsorption and desorption techniques.The Al-SBA-15 sample was also studied by 27 Al nuclear magnetic resonance (27 Al NMR) and ammonia temperature programmed desorption (NH 3-TPD) techniques.In addition,the catalytic activity of Al-SBA-15 zeolite was investigated by the Friedel-Crafts reactions of 2,4-di-tert-butylphenol with cinnamyl alcohol.The test results showed that the thermal and hydrothermal stability of Al-SBA-15 zeolite was better than that of SBA-15 zeo-lite.The Al-SBA-15 zeolite sample prepared by impregnation method exhibits more framework aluminum species and Al-O-Si units.Therefore,the number of the surface hydroxyl groups was reduced,resulting in the stabilization of framework structure ofAl-SBA-15 zeolite.The aluminum species can form weak and medium-strong acid sites with catalytic activity.展开更多
Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was ac...Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was achieved at mild condition using cetyltfimethylammonium bromide as structure-directing agents. The resulting samples were characterized by XRD, SEM, FTIR nitrogen adsorption-desorption isotherms and catalytic performance in bulky molecular involved reaction. The results revealed that synthesized mesoporous materials derived from the silinaite exhibited an ordered hexagonal crystal structure with average pore diameter 2.7 nm and BET surface area 817m^2/g. The SDM-supported ZnCl2 catalyst, prepared by impregnationevaporation method, retained the mesoporous structure and showed high selectivity in alkylation of benzene with benzyl chloride.展开更多
Using cetyl-trimethyl-ammonium bromide (CTMAB) as template and tetraethylortho-silicate (TEOS) as silica source, the MCM-41 mesoporous materials incorporated in framework by Y, Nd and Sm were synthesized by hydrot...Using cetyl-trimethyl-ammonium bromide (CTMAB) as template and tetraethylortho-silicate (TEOS) as silica source, the MCM-41 mesoporous materials incorporated in framework by Y, Nd and Sm were synthesized by hydrothermal synthesis method. The structure, morphology of materials and the state of Y, Nd, Sm in materials were investigated by means of XRD, nitrogen adsorption-desorption, SEM, IR spectrometry, TG-DTA. The XRD results indicate that the samples possess the mesoporous MCM-41 structures with ordered hexagonal arrangements. Y, Nd and Sm ions can get into the framework of mesoporous materials. Nitrogen adsorption desorption isotherms show that the samples have typical mesopores characteristics. SEM micrographs reveal that incorporated sampies show a spherical morphology and the diameters are averagely 0. l0 to 0.15 μm. In IR spectrum of samples, there are the feature adsorption peaks about Si-O-Ln(Ln=Y, Sm, Nd)at 960-985 cm^-1, which affirm that Y, Nd, Sm ions locate in the framework of several mesoporous materials. Results from TG-DTA analysis suggest that two different template sorption sites exist in the framework of YMCM-41, SmMCM-41, NdMCM-41, which powerfully proves that the presence of Y, Nd and Sm in Si framework of the materials.展开更多
A mesoporous titanium/silicon -containing montmorillonite-based catalytic materials has been synthesized by novel gallery-templated techniques. XRD, SEM, framework IR, and N2 adsorptiondesorption isotherms provided e...A mesoporous titanium/silicon -containing montmorillonite-based catalytic materials has been synthesized by novel gallery-templated techniques. XRD, SEM, framework IR, and N2 adsorptiondesorption isotherms provided evidence of the formation of Si/Ti pillars. The synthetic materials show potential catalytic application for hydroxylation of phenol with peroxide.展开更多
A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods....A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.展开更多
A series of mesoporous Cu-Mn-Al2O3(CMA) materials was synthesized at moderate temperature and their structures were characterized by XRD, N2 physical adsorption and TPR techniques. It was found that using metal comp...A series of mesoporous Cu-Mn-Al2O3(CMA) materials was synthesized at moderate temperature and their structures were characterized by XRD, N2 physical adsorption and TPR techniques. It was found that using metal complex ion[Cu(NH3) 4^2+-Mn(NH3)6^2+] as raw materials is easier to form good-structure mesoporous Cu-Mn-Al2O3 materials than using its nitrate salt [Cu(NO3)2-Mn(NO3)2]. The TPR tests results indicate that CuO and MnOx were homogeneously dispersed in the mesoporous materials. Their catalytic application to preferential catalytic oxidation of CO in a hydrogen-rich stream was studied. The activity varies in the order of CMA(1:1, molar ratio)〉 CMA(1:2)〉CMA(2:1)〉CMA(CP)〉CMA(1:0)≈CMA(0:1). The CMA(1:0) and CMA(0:1) have lower activity compared to other samples, implying that there existed coordination effect between Cu-Mn in the samples. The selectivity varied in the order of CMA(0:1)≥CMA(1:2)〉CMA(1:1)〉CMA(2:1)〉CMA(1:0) at higher temperature (≥ 120 ℃), indicating that increasing the Cu content enhanced the conversion of H2. The sample CMA(CP) made by coprecipitation method has a lower CO oxidation activity and selectivity than its counter-parts of mesoporous Cu-Mn-Al2O3 materials[CMA(1:2)], this attributed to the lower surface area of the former and poor interaction of CuO with MnOx.展开更多
The lanthanum aluminum mesoporous materials were synthesized using sodium dodecyl sulfate as a template agent by ultrasonic hydrothermal method.The resulting samples were characterized by low angle X-ray diffraction(...The lanthanum aluminum mesoporous materials were synthesized using sodium dodecyl sulfate as a template agent by ultrasonic hydrothermal method.The resulting samples were characterized by low angle X-ray diffraction(XRD),N2 adsorption-desorption studies,transmission electron microscopy(TEM)and surface morphology analysis(SEM),surface acid(NH3-TPD),reducibility properties(TPR),X-ray energy dispersive spectrometer(EDS)and thermogravimetric analysis(TG/DTG).A l/La composite mesoporous material were synthesized with n(Al)︰n(La)=70︰1.0,80°C of reaction temperature,20 h of reaction time,12 h of crystallization time,650°C of calcination temperature.The specific surface area of the sample is 273.90 m 2 ·g ?1 ,with the average diameter 5.642 nm and pore volume 0.2354 cm 3 ·g ?1 .The samples have mesoporous structure and its particles are similar to a worm-shaped tubular structure.The influence of calcination temperature on the surface physical and chemical properties of Al/La composited mesoporous materials was examined,and the results showed that the acid strength was increased but the amount of acidic sites is decreased as the calcination temperature increased.It was found that the sample calcined at 650°C had appropriate acid content,acid strength and better reducibility.展开更多
Mesoporous materials with the highest surface area were synthesized by hydrothermal treatment from coal-measure kaolin using cetyltrimethylammonium bromide(CTAB)as template.The effect of several factors on surface a...Mesoporous materials with the highest surface area were synthesized by hydrothermal treatment from coal-measure kaolin using cetyltrimethylammonium bromide(CTAB)as template.The effect of several factors on surface area of products also had been discussed.The products were characterized by FT- IR,HRTEM and N 2 adsorption and desorption isotherm plot methods.There was typical structure as Si-O,Si- OH and Si-O-Si of mesoporous materials in the framework of synthesized materials;the pore size distributions of the products showed a sharp peak at 3.82 nm.The effect of hydrothermal treatment time and the amount of template on the specific surface area of mesoporous materials was important,when the Surf/Si=0.135,and hydrothermal time=12 h,and the surface area of the product reached up to 1 070 m2/g,which was higher than other products.展开更多
基金Ministry of Trade,Industry and Energy,Grant/Award Number:20010095Korea Evaluation Institute of Industrial Technology,Grant/Award Number:20012341。
文摘Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.
基金supported by the National Natural Science Foundation of China(52370041)National Natural Science Foundation of China(21976134 and 21707104)State Key Laboratory of Pollution treatment and Resource Reuse Foundation(NO.PCRRK21001).
文摘To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.
基金Project (51162026) supported by the National Natural Science Foundation of ChinaProjects (20100480949, 201104509) supported by China Postdoctoral Science FoundationProject (133274341015501) supported by Postdoctoral Science Foundation of Central South University, China
文摘Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.
基金supported by the National Key Technology Research&Development Program of China(2014BAL02B02)the National Natural Science Foundation of China(51578397)~~
文摘The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane‐rich biogas. However, digested sludge, the residue produced in that process, still contains high levels of heavy metals and other harmful substances that might make traditional disposal difficult. We have devised a facile method of converting digested sludge into a mesoporous material that acts as an effective and stable heterogeneous catalyst for the photo‐Fenton reaction. A comparison of the removal of rhodamine B under different conditions showed that FAS‐1‐350, which was synthesized by mixing the digested sludge with a 1 mol/L(NH4)2Fe(SO4)2 solution followed by calcination at 350 °C, exhibited the best catalytic activity owing to its faster reaction rate and lower degree of Fe leaching. The results indicate that Fe^(2+)‐loaded catalysts have significant potential to act as stable and efficient heterogeneous promoters for the photo‐Fenton reaction, with better performance than Fe^3+‐loaded catalysts because the Fe(II)/Fe(III)compounds formed in the calcination process are necessary to sustain the Fenton reaction. This protocol provides an alternative, environmentally friendly method of reusing digested sludge and demonstrates an easily synthesized mesoporous material that effectively degrades azo dyes.
基金supported by the National Major Research Plan for Water Pollution Control and Treatment of China (No.2008ZX07101-015)
文摘A series of lanthanum doped meosoporous MCM-41 (LaxM41, x is Si/La molar ratio) was prepared by sol-gel method. The surface structure of the materials was investigated with X-ray diffraction and N2 adsorption/desorption technique. The content of La in the materials was determined by ICE It was found that the La content of La25M41, La50M41 and La100M41 was 7.53%, 3.89% and 2.32%, respectively. The phosphate adsorption capacities increased with increasing amount of La incorporation. With 0.40 g La25M41 99.7% phosphate could be removed. The effects of Si/La molar ratio, LaxM41 dose, pH, initial concentration of phosphate solution, co-ions on phosphate adsorption were also evaluated. The phosphate adsorption kinetics of LaxM41 could be well-described by the pseudo second-order model, and Langmuir isotherm fit equilibrium data much better than the Freundlich isotherm.
基金Project supported by the National Basic Research Program of China (2004CB719500)the Commission of Science and Technology of Shanghai Municipality (03DJ14006)
文摘Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the framework under hydrothermal conditions. The structure and the state of La or Ce were investigated through the analyses of XRD, nitrogen adsorption-desorption, FT-IR, and UV-Vis. XRD and N2 adsorption-desorption results showed that Ln-MCM-41 exhibited the loss of the lattice ordering of the MCM-41 construct, and larger unit cell parameter and pore diameter than pure silica MCM-41. The FT-IR and UV-Vis results indicated the presence of isolated tetra-coordinated La or Ce ions in the framework and other Ln species dispersed highly on the Ln-MCM-41 surface simultaneously. Furthermore, their catalytic behaviors in the oxidation of styrene were studied using H2O2 as the oxidant. The La-MCM-41 catalysts exhibited high reactivity and the reactivity increased with the increase of the La content in the La-MCM-41 samples. On the contrary, Ce-MCM-41 catalysts showed low reactivity in the oxidation of styrene and the conversion of styrene decreased with the increase of the Ce content in the Ce-MCM-41 samples.
基金the National Natural Science Foundation of China (No. 40472026) the 0utstanding 0verseas Chinese Scholars Fund of Chinese Academy of Sciences (2003-1-7).
文摘Although hydrotalcite, or layered double hydroxides (LDHs), is not a common mineral, it is an important material that can be easily synthesized in laboratory. In this study, structural evolvement and BET surface area changes of heat treated Mg/AI-LDH is evaluated by XRD, TEM and N2-BET analyses. The results indicate that the magnesium-aluminum LDH with carbonate as interlayer anion, periclase-like oxides was formed at temperatures of 400-800℃. Meanwhile, 2-3 nanometer mesoporous were formed during decomposition of LDH. However, the heat treated samples still preserve the morphology of the original LDH plates. Periclase-like formed from LDH heat treatment may re-hydrolyze and recover the structure of LDH. However, crystallinity of the recovered LDH is lower than that of the original LDH. This heat treatment will result in formation of (Mg, Al)-oxide nano-crystals and nanopores among the nano-crystals. When heating temperature exceeds 1000, the periclase-like (Mg, Al)-oxide is transformed into a composite with periclase (MgO) and spinel phases. The periclase can be re-hydrolyzed and dissolved in HCl solution. After acid treatment, the sample with a high surface area is composed of spinel nano-crystals and nanopores among them. Our results will provide a new and economic way to synthesize mesoporous materials through pathways of phase transformation of precursor materials with different composition.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
基金financial support from the Program for New Century Excellent Talents in University(NCET-040270)。
文摘Two kinds of bi-functional transition metal doped mesoporous materials(Fe-HMS and Fe-MCM-41) are prepared using one-step hydrothermal method and then treated with hydrochloric acid ethanol solution.The N2 adsorption and HRTEM results show that both of Fe-HMS and Fe-MCM-41 possess mesoporous structure. The UV–vis results suggest that the Fe species are mainly located within the framework. The basicity of as-prepared samples was studied by temperature programmed desorption using CO2 as probe molecule(CO2-TPD). The catalytic performance of Fe-HMS and Fe-MCM-41 in CO2 cycloaddition largely depends on the amount of the accessible basic sites. The acid–base active sites, framework Fe and PDDA species cooperatively catalyze the CO2 cycloaddition for the production of cyclic carbonates under the condition without any co-catalyst. The conversion of epichlorohydrin(ECH) is 97.4% and the selectivity of chloropropene carbonate is 92.9% under optimal conditions. The approximate rate constant of cycloaddition reaction of CO2 with ECH under optimum reaction temperature is calculated. It is worth noting that the Fe-HMS material shows superior reusability than Fe-MCM-41. In addition, this work provides a facile way on the synthesis of bi-functional acid–base heterogeneous catalyst with outstanding catalytic performance for the fixation of CO2.
基金the national natural science foundation of China (No.20541002)SINOPEC basic research foundation (X504034) Zhejiang provincial natural science foundation (No.Y405064)
文摘Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.
基金This work has been supported by the US National Institutes of Health (No. RO1-DE09848 to YW) and Natural Science Foundation of China (NSFC Nos. 29674001 and 19810760343 to KYQ and YW).
文摘We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials; which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials.
基金supported financially by the National Natural Science Foundation of China under project (no. 51272221)the Key Project of Strategic New Industry of Hunan Province under project (nos. 2016GK4005 and 2016GK4030)
文摘FeF3·0.33H2O crystallizes in hexagonal tungsten bronze structure with more opened hexagonal cavities are considered as next generation electrode materials of both lithium ion battery and sodium ion battery.In this paper the mesoporous spherical FeF3·0.33H2O/MWCNTs nanocomposite was successfully synthesized via a one-step solvothermal approach. Galvanostatic measurement showed that the performances of sodium ion batteries(SIBs) using FeF3·0.33H2O/MWCNTs as cathode material were highly dependent on the morphology and size of the as-prepared materials. Benefitting from the special mesoporous structure features, FeF3·0.33H2O/MWCNTs nanocomposite exhibits much better electrochemical performances in terms of initial discharge capacity(350.4 mAh g-1) and cycle performance(123.5 mAh g-1 after 50 cycles at 0.1 C range from 1.0 V to 4.0 V) as well as rate capacity(123.8 mAh g-1 after 25 cycles back to 0.1 C). The excellent electrochemical performance enhancement can be attributed to the synergistic effect of the mesoporous structure and the MWCNTs conductive network, which can effectively increase the contact area between the active materials and the electrolyte, shorten the Na+ diffusion pathway,buffer the volume change during cycling/discharge process and improve the structure stability of the FeF3·0.33H2O/MWCNTs nanocomposite.
文摘The mesoporous Al-SBA-15 zeolite was obtained via impregnation of pure silica-based SBA-15 zeolite with aluminum nitrate.The Al-SBA-15 sample was calcined in air at 800 ℃ for 6 h and hydrothermally treated at near 100 ℃ for 120 h,respectively,and then the thermal and hydrothermal stability of Al-SBA-15 sample was investigated by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and nitrogen adsorption and desorption techniques.The Al-SBA-15 sample was also studied by 27 Al nuclear magnetic resonance (27 Al NMR) and ammonia temperature programmed desorption (NH 3-TPD) techniques.In addition,the catalytic activity of Al-SBA-15 zeolite was investigated by the Friedel-Crafts reactions of 2,4-di-tert-butylphenol with cinnamyl alcohol.The test results showed that the thermal and hydrothermal stability of Al-SBA-15 zeolite was better than that of SBA-15 zeo-lite.The Al-SBA-15 zeolite sample prepared by impregnation method exhibits more framework aluminum species and Al-O-Si units.Therefore,the number of the surface hydroxyl groups was reduced,resulting in the stabilization of framework structure ofAl-SBA-15 zeolite.The aluminum species can form weak and medium-strong acid sites with catalytic activity.
基金Fund supports by the National Natural Science Foundation of China (No,20541002)Zhejiang Provincial Natural Science Foundation (No.Y405064) are acknowledged.
文摘Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was achieved at mild condition using cetyltfimethylammonium bromide as structure-directing agents. The resulting samples were characterized by XRD, SEM, FTIR nitrogen adsorption-desorption isotherms and catalytic performance in bulky molecular involved reaction. The results revealed that synthesized mesoporous materials derived from the silinaite exhibited an ordered hexagonal crystal structure with average pore diameter 2.7 nm and BET surface area 817m^2/g. The SDM-supported ZnCl2 catalyst, prepared by impregnationevaporation method, retained the mesoporous structure and showed high selectivity in alkylation of benzene with benzyl chloride.
文摘Using cetyl-trimethyl-ammonium bromide (CTMAB) as template and tetraethylortho-silicate (TEOS) as silica source, the MCM-41 mesoporous materials incorporated in framework by Y, Nd and Sm were synthesized by hydrothermal synthesis method. The structure, morphology of materials and the state of Y, Nd, Sm in materials were investigated by means of XRD, nitrogen adsorption-desorption, SEM, IR spectrometry, TG-DTA. The XRD results indicate that the samples possess the mesoporous MCM-41 structures with ordered hexagonal arrangements. Y, Nd and Sm ions can get into the framework of mesoporous materials. Nitrogen adsorption desorption isotherms show that the samples have typical mesopores characteristics. SEM micrographs reveal that incorporated sampies show a spherical morphology and the diameters are averagely 0. l0 to 0.15 μm. In IR spectrum of samples, there are the feature adsorption peaks about Si-O-Ln(Ln=Y, Sm, Nd)at 960-985 cm^-1, which affirm that Y, Nd, Sm ions locate in the framework of several mesoporous materials. Results from TG-DTA analysis suggest that two different template sorption sites exist in the framework of YMCM-41, SmMCM-41, NdMCM-41, which powerfully proves that the presence of Y, Nd and Sm in Si framework of the materials.
基金supported by the National Natural Science Foundation of China(29706011)Zhejiang Provincial Natural Science Foundation NSF(201057)is acknowledged
文摘A mesoporous titanium/silicon -containing montmorillonite-based catalytic materials has been synthesized by novel gallery-templated techniques. XRD, SEM, framework IR, and N2 adsorptiondesorption isotherms provided evidence of the formation of Si/Ti pillars. The synthetic materials show potential catalytic application for hydroxylation of phenol with peroxide.
文摘A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.
基金Supported by the Science and Technology Development Project of Shandong Province,China(No.2007GG3WZ03018)
文摘A series of mesoporous Cu-Mn-Al2O3(CMA) materials was synthesized at moderate temperature and their structures were characterized by XRD, N2 physical adsorption and TPR techniques. It was found that using metal complex ion[Cu(NH3) 4^2+-Mn(NH3)6^2+] as raw materials is easier to form good-structure mesoporous Cu-Mn-Al2O3 materials than using its nitrate salt [Cu(NO3)2-Mn(NO3)2]. The TPR tests results indicate that CuO and MnOx were homogeneously dispersed in the mesoporous materials. Their catalytic application to preferential catalytic oxidation of CO in a hydrogen-rich stream was studied. The activity varies in the order of CMA(1:1, molar ratio)〉 CMA(1:2)〉CMA(2:1)〉CMA(CP)〉CMA(1:0)≈CMA(0:1). The CMA(1:0) and CMA(0:1) have lower activity compared to other samples, implying that there existed coordination effect between Cu-Mn in the samples. The selectivity varied in the order of CMA(0:1)≥CMA(1:2)〉CMA(1:1)〉CMA(2:1)〉CMA(1:0) at higher temperature (≥ 120 ℃), indicating that increasing the Cu content enhanced the conversion of H2. The sample CMA(CP) made by coprecipitation method has a lower CO oxidation activity and selectivity than its counter-parts of mesoporous Cu-Mn-Al2O3 materials[CMA(1:2)], this attributed to the lower surface area of the former and poor interaction of CuO with MnOx.
文摘The lanthanum aluminum mesoporous materials were synthesized using sodium dodecyl sulfate as a template agent by ultrasonic hydrothermal method.The resulting samples were characterized by low angle X-ray diffraction(XRD),N2 adsorption-desorption studies,transmission electron microscopy(TEM)and surface morphology analysis(SEM),surface acid(NH3-TPD),reducibility properties(TPR),X-ray energy dispersive spectrometer(EDS)and thermogravimetric analysis(TG/DTG).A l/La composite mesoporous material were synthesized with n(Al)︰n(La)=70︰1.0,80°C of reaction temperature,20 h of reaction time,12 h of crystallization time,650°C of calcination temperature.The specific surface area of the sample is 273.90 m 2 ·g ?1 ,with the average diameter 5.642 nm and pore volume 0.2354 cm 3 ·g ?1 .The samples have mesoporous structure and its particles are similar to a worm-shaped tubular structure.The influence of calcination temperature on the surface physical and chemical properties of Al/La composited mesoporous materials was examined,and the results showed that the acid strength was increased but the amount of acidic sites is decreased as the calcination temperature increased.It was found that the sample calcined at 650°C had appropriate acid content,acid strength and better reducibility.
基金Funded by Social Development Plan of Jiangsu Department of the Science and Technology,Jiangsu,China(No.BS2007038)
文摘Mesoporous materials with the highest surface area were synthesized by hydrothermal treatment from coal-measure kaolin using cetyltrimethylammonium bromide(CTAB)as template.The effect of several factors on surface area of products also had been discussed.The products were characterized by FT- IR,HRTEM and N 2 adsorption and desorption isotherm plot methods.There was typical structure as Si-O,Si- OH and Si-O-Si of mesoporous materials in the framework of synthesized materials;the pore size distributions of the products showed a sharp peak at 3.82 nm.The effect of hydrothermal treatment time and the amount of template on the specific surface area of mesoporous materials was important,when the Surf/Si=0.135,and hydrothermal time=12 h,and the surface area of the product reached up to 1 070 m2/g,which was higher than other products.