In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mes...In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.展开更多
Electrochemical properties of lithium-sulfur(Li-S)batteries are mainly hindered by both the insulating nature of elemental sulfur(i.e.,molecular S8)and the shuttling effect or sluggish redox kinetics of lithium polysu...Electrochemical properties of lithium-sulfur(Li-S)batteries are mainly hindered by both the insulating nature of elemental sulfur(i.e.,molecular S8)and the shuttling effect or sluggish redox kinetics of lithium polysulfide intermediates(Li_(2)S_(n),3≤n≤8).In this paper,a three-dimensional mesoporous reduced graphene oxide-based nanocomposite,with the embedding of metallic Co nanoparticles and the doping of elemental N(Co/NrGO),and its simply ground mixture with powdered S at a mass ratio of 1:6(Co/NrGO/S)are prepared and used as cathode-/separator-coated interlayers and working electrodes in assembled Li-S cells,respectively.One of the effective cell configurations is to paste composite Co/NrGO onto both the S-loading cathode and separator,showing good cycling stability(1070mAh g^(−1) in the 100th cycle at 0.2 C),highrate capability(835mAh g^(−1),2.0 C),and excellent durability(905mAh g^(−1) in the 250th cycle at 0.5 or 0.2 C).Compared with the experimental results of Co-absent NrGO,electrochemical properties of various Co/NrGO-based cell configurations clearly show multiple functions of Co/NrGO,indicating that the absence of Co/NrGO coatings and/or Co nanoparticles may be inadequate to achieve superior S availability of assembled Li-S batteries.展开更多
Advanced oxidation technologies are a friendly environmental approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous WO3 and WO3-graphene oxide(GO) nanocomposites has been perfo...Advanced oxidation technologies are a friendly environmental approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous WO3 and WO3-graphene oxide(GO) nanocomposites has been performed through the sol–gel method. Then, platinum(Pt) nanoparticles were deposited onto the WO3 and WO3-GO nanocomposite through photochemical reduction to produce mesoporous Pt/WO3 and Pt/WO3-GO nanocomposites. X-ray diffraction(XRD) findings exhibit a formation of monoclinic and triclinic WO3 phases. Transmission Electron Microscope(TEM) images of Pt/WO3-GO nanocomposites exhibited that WO3 nanoparticles are obviously agglomerated and the particle sizes of Pt and WO3 are ~ 10 nm and 20–50 nm, respectively. The mesoporous Pt/WO3 and Pt/WO3-GO nanocomposites were assessed for photocatalytic degradation of Methylene Blue(MB) as a probe molecule under visible light illumination.The findings showed that mesoporous Pt/WO3, WO3-GO and Pt/WO3-GO nanocomposites exhibited much higher photocatalytic efficiencies than the pure WO3. The photodegradation rates by mesoporous Pt/WO3-GO nanocomposites are 3, 2 and 1.15 times greater than those by mesoporous WO3, WO3-GO, and Pt/WO3, respectively. The key factors of the enhanced photocatalytic performance of Pt/WO3-GO nanocomposites could be explained by the highly freedom electron transfer through the synergetic effect between WO3 and GO sheets, in addition to the Pt nanoparticles that act as active sites for O2 reduction, which suppresses the electron hole pair recombination in the Pt/WO3-GO nanocomposites.展开更多
Composites of polycaprolactone (PCL) with mesoporous silica MCM-41 and N-[3- (trimethoxysilyl)propyl]-ethylenediamine (EPTES)-functionalized MCM-41 (EPTES/MCM-41) were prepared by in situ polymerization. The t...Composites of polycaprolactone (PCL) with mesoporous silica MCM-41 and N-[3- (trimethoxysilyl)propyl]-ethylenediamine (EPTES)-functionalized MCM-41 (EPTES/MCM-41) were prepared by in situ polymerization. The thermal properties of the composites were characterized by thermogravimetric analysis. There was an increase in the thermal decomposition temperature of PCL by more than 55 ℃, when the EPTES/MCM-41 loading was higher than 2 wt%. Tensile test results indicated that adding MCM-41 increased the brittleness of the PCL matrix, while adding 8 wt% of EPTES/MCM-41 increased the Young's modulus by 26%. Incorporating MCM-41 increased the crystallinity of the resulting PCL composite, compared with that of PCL. Incorporating up to 5 wt% EPTES/MCM-41 slightly reduced the crystallinity of PCL. The different effects of MCM-41 and EPTES/MCM-41 on the composite reflected the degree of interaction and dispersion of the silica filler in the polymer matrix, as evidenced by results from transmission electron microscopy and atomic force microscopy.展开更多
基金supported by the National Natural Science Foundation of China(21373056)the Science and Technology Commission of Shanghai Municipality(13DZ2275200)~~
文摘In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.
基金The authors are grateful for the financial support of the National Natural Science Foundation of China(21673131)the Natural Science Foundation of Fujian Province(2019J01800).
文摘Electrochemical properties of lithium-sulfur(Li-S)batteries are mainly hindered by both the insulating nature of elemental sulfur(i.e.,molecular S8)and the shuttling effect or sluggish redox kinetics of lithium polysulfide intermediates(Li_(2)S_(n),3≤n≤8).In this paper,a three-dimensional mesoporous reduced graphene oxide-based nanocomposite,with the embedding of metallic Co nanoparticles and the doping of elemental N(Co/NrGO),and its simply ground mixture with powdered S at a mass ratio of 1:6(Co/NrGO/S)are prepared and used as cathode-/separator-coated interlayers and working electrodes in assembled Li-S cells,respectively.One of the effective cell configurations is to paste composite Co/NrGO onto both the S-loading cathode and separator,showing good cycling stability(1070mAh g^(−1) in the 100th cycle at 0.2 C),highrate capability(835mAh g^(−1),2.0 C),and excellent durability(905mAh g^(−1) in the 250th cycle at 0.5 or 0.2 C).Compared with the experimental results of Co-absent NrGO,electrochemical properties of various Co/NrGO-based cell configurations clearly show multiple functions of Co/NrGO,indicating that the absence of Co/NrGO coatings and/or Co nanoparticles may be inadequate to achieve superior S availability of assembled Li-S batteries.
文摘Advanced oxidation technologies are a friendly environmental approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous WO3 and WO3-graphene oxide(GO) nanocomposites has been performed through the sol–gel method. Then, platinum(Pt) nanoparticles were deposited onto the WO3 and WO3-GO nanocomposite through photochemical reduction to produce mesoporous Pt/WO3 and Pt/WO3-GO nanocomposites. X-ray diffraction(XRD) findings exhibit a formation of monoclinic and triclinic WO3 phases. Transmission Electron Microscope(TEM) images of Pt/WO3-GO nanocomposites exhibited that WO3 nanoparticles are obviously agglomerated and the particle sizes of Pt and WO3 are ~ 10 nm and 20–50 nm, respectively. The mesoporous Pt/WO3 and Pt/WO3-GO nanocomposites were assessed for photocatalytic degradation of Methylene Blue(MB) as a probe molecule under visible light illumination.The findings showed that mesoporous Pt/WO3, WO3-GO and Pt/WO3-GO nanocomposites exhibited much higher photocatalytic efficiencies than the pure WO3. The photodegradation rates by mesoporous Pt/WO3-GO nanocomposites are 3, 2 and 1.15 times greater than those by mesoporous WO3, WO3-GO, and Pt/WO3, respectively. The key factors of the enhanced photocatalytic performance of Pt/WO3-GO nanocomposites could be explained by the highly freedom electron transfer through the synergetic effect between WO3 and GO sheets, in addition to the Pt nanoparticles that act as active sites for O2 reduction, which suppresses the electron hole pair recombination in the Pt/WO3-GO nanocomposites.
文摘Composites of polycaprolactone (PCL) with mesoporous silica MCM-41 and N-[3- (trimethoxysilyl)propyl]-ethylenediamine (EPTES)-functionalized MCM-41 (EPTES/MCM-41) were prepared by in situ polymerization. The thermal properties of the composites were characterized by thermogravimetric analysis. There was an increase in the thermal decomposition temperature of PCL by more than 55 ℃, when the EPTES/MCM-41 loading was higher than 2 wt%. Tensile test results indicated that adding MCM-41 increased the brittleness of the PCL matrix, while adding 8 wt% of EPTES/MCM-41 increased the Young's modulus by 26%. Incorporating MCM-41 increased the crystallinity of the resulting PCL composite, compared with that of PCL. Incorporating up to 5 wt% EPTES/MCM-41 slightly reduced the crystallinity of PCL. The different effects of MCM-41 and EPTES/MCM-41 on the composite reflected the degree of interaction and dispersion of the silica filler in the polymer matrix, as evidenced by results from transmission electron microscopy and atomic force microscopy.