Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially acces...Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially accessible internal spaces,and so forth.Dissimilar guest species(such as organic groups or metal nanoparticles)could be readily decorated onto the interfaces of the channels and pores,realizing the functionalization of dendritic mesoporous silica nanoparticles for targeted applications.As adsorbents and catalysts,dendritic mesoporous silica nanoparticles-based materials have experienced nonignorable development in CO_(2)capture and catalytic conversion.This comprehensive review provides a critical survey on this pregnant subject,summarizing the designed construction of novel dendritic mesoporous silica nanoparticles-based materials,the involved chemical reactions(such as CO_(2)methanation,dry reforming of CH_(4)),the value-added chemicals from CO_(2)(such as cyclic carbonates,2-oxazolidinones,quinazoline-2,4(1H,3H)-diones),and so on.The adsorptive and catalytic performances have been compared with traditional silica mesoporous materials(such as SBA-15 or MCM-41),and the corresponding reaction mechanisms have been thoroughly revealed.It is sincerely expected that the in-depth discussion could give materials scientists certain inspiration to design brand-new dendritic mesoporous silica nanoparticles-based materials with superior capabilities towards CO_(2)capture,utilization,and storage.展开更多
Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidi...Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidine dithiocarbamate(APDC)and externally with alkyl-diol groups,which was named as Diol-APDC-SBA15,was successfully developed and characterized by powder X-ray diffraction patterns,nitrogen adsorption,and Fourier transform infrared spectroscopy.The solutions with lead,chromium,cadmium,and copper were used to investigate the adsorption capacity of Diol-APDC-SBA15.Diol-APDC-SBA15 was adopted to remove heavy metals from cooking liquids of clams(Ruditapes philippinarum),hydrolysate liquids of oysters(Ostrea gigas Thunberg),and polysaccharide solution from the cooking liquid of R.philippinarum.The efficiencies of removing heavy metal ions and the loss rates of proteins and polysaccharides were examined.The results showed that the adsorption capacities of Diol-APDCSBA15 for Pb,Cr,Cd,and Cu in standard heavy-metal solutions were 161.4,166.1,29.6,and 60.2mgg^(−1),respectively.The removal efficiency of Diol-APDC-SBA15 for Pb in the three shellfish processing liquids ranged from 60.5%to 99.6%.The Cr removal efficiency was above 99.9%in the oyster hydrolysate liquid.Meanwhile,the percentages of polysaccharide loss were 5.5%and 3.7%in the cooking liquid of clam and polysaccharide solution,respectively,and the protein loss was 1.2%in the oyster hydrolysate liquid.Therefore,the Diol-APDC-SBA15 material exhibits a great potential application in the removal of heavy metals from shellfish processing liquids with low losses of proteins and polysaccharides.展开更多
The weak adhesion between nanocarriers and the intestinal mucosa was one of the main reasons caused the failure in oral delivery.Inspired by the“antiskid tires”with complex chiral patterns,mesoporous silica nanopart...The weak adhesion between nanocarriers and the intestinal mucosa was one of the main reasons caused the failure in oral delivery.Inspired by the“antiskid tires”with complex chiral patterns,mesoporous silica nanoparticles AT-R@CMSN exhibiting geometrical chiral structure were designed to improve the surface/interface roughness in nanoscale,and employed as the hosting system for insoluble drugs nimesulide(NMS)and ibuprofen(IBU).Once performing the delivery tasks,AT-R@CMSN with rigid skeleton protected the loaded drug and reduced the irritation of drug on gastrointestinal tract(GIT),while their porous structure deprived drug crystal and improved drug release.More importantly,AT-R@CMSN functioned as“antiskid tire”to produce higher friction on intestinal mucosa and substantively influencedmultiple biological processes,including“contact”,“adhesion”,“retention”,“permeation”and“uptake”,compared to the achiral S@MSN,thereby improving the oral adsorption effectiveness of such drug delivery systems.By engineering AT-R@CMSN to overcome the stability,solubility and permeability bottlenecks of drugs,orally administered NMS or IBU loaded AT-R@CMSN could achieve higher relative bioavailability(705.95%and 444.42%,respectively)and stronger anti-inflammation effect.In addition,AT-R@CMSN displayed favorable biocompatibility and biodegradability.Undoubtedly,the present finding helped to understand the oral adsorption process of nanocarriers,and provided novel insights into the rational design of nanocarriers.展开更多
A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%...A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%),namely,mesoporous silica capsule(MSC)with core-shell structure.Transmission electron microscopy(TEM),nitrogen adsorption and other characterization techniques were used to study the formation process of nano-microspheres.A new mechanism of self-adaptive concentration gradient regulation of silicon migration and recombination core-shell structure was proposed to explain the formation of a cavity in the MSC system.The core-shell design can enhance the specific surface area and pore volume while maintaining the monodispersity and mesoporous size.To study the water harvesting performance of MSC,solid silica nanoparticles(SSN)and mesoporous silica nanoparticles(MSN)were prepared.In a small atmospheric water collection test(25℃,40%RH),the water vapour adsorption and desorption kinetics of MSC,SSN,MSN and a commercial silica gel(CSG)were compared and analyzed.The results show that the MSC with mesoporous channels and core-shell structure can provide about 0.324 gwater/gadsorbent,79%higher than the CSG(0.181 gwater/gadsorbent).It is 25.1%higher than that of 0.259 gwater/gadsorbentof un-hollowed MSN and 980%higher than that of0.03 gwater/gadsorbentof un-hollowed SSN.The material has a large specific surface area and pore volume,simple preparation method and low cost,which provides a feasible idea for realising atmospheric water collection in arid and semi-arid regions.展开更多
Background:Currently,no drugs can specifically improve clinical cardiac ischemia-reperfusion injury or the prognosis of hemodialysis.Salvianolic acid B(SalB)is a widely used cardiac protectant;however,its clinical app...Background:Currently,no drugs can specifically improve clinical cardiac ischemia-reperfusion injury or the prognosis of hemodialysis.Salvianolic acid B(SalB)is a widely used cardiac protectant;however,its clinical application is limited by its low oral bioavailability and poor intestinal absorption.The exploration of its preparation and clinical applications has become a research hotspot in recent years.Methods:To determine whether mesoporous silica nanoparticles(MSNs)efficiently delivered SalB to the heart and SalB@MSNs-RhB reduced myocardial ischemia-reperfusion injury,we constructed a myocardial ischemia-reperfusion male rat model,hypoxia/reoxygenation cardiomyocytes,and treated them with SalB@MSNs-RhB.Results:SalB@MSNs-RhB showed improved bioavailability,therapeutic effect,heightened JAK2/STAT3-dependent pro-survival signaling,and antioxidant responses,thereby protecting cardiomyocytes from ischemia-reperfusion injury-induced oxidative stress and apoptosis.Conclusion:This use of SalB-loaded nanoparticles and investigation of their mechanism of action may provide a new strategy for treating cardiomyocytes.Thus,hypoxia/reoxygenation promotes the clinical application of SalB.展开更多
A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and m...A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and metal source respectively.These materials were then characterized through X-ray diffraction(XRD),transmission electron microscopy(TEM),Raman spectroscopy,Fourier transform infrared spectra(FTIR),diffuse reflectance spectra(DRS),and N2 adsorption-desorption,which were found to contain tungsten species that were effectively dispersed throughout the structure.The as-prepared materials W-SiO2 were also found to possess a mesoporous structure.The pore diameters of the respective sample W-SiO2-20 determined from the TEM images ranged from 2 to 4 nm,which was close to the average pore size determined from the nitrogen desorption isotherm(2.9 nm).The materials were evaluated as catalysts for the heterogeneous oxidative desulfurization of dibenzothiophene(DBT),which is able to achieve deep desulfurization within 40 min under the optimal conditions(Catalyst(W-SiO2-20)= 0.01 g,temperature = 60℃,oxidant(H2O2)= 20 μL).For the removal of different organic sulfur compounds within oil,the ability of the catalyst(W-SiO2-20) under the same conditions to remove sulfur compounds decreased in the order:4,6-dimethyldibenzothiophene Dibenzothiophene Benzothiophene 1-dodecanethiol.Additionally,they did not require organic solvents as an extractant in the heterogeneous oxidative desulfurization process.After seven separate catalytic cycles,the desulfurization efficiency was still as high as 90.3%.From the gas chromatography-mass spectrometer analysis,DBT was entirely oxidized to its corresponding sulfone DBTO2 after reaction.A mechanism for the heterogeneous desulfurization reaction was proposed.展开更多
The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild- temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for ...The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild- temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for simultaneously removing organic templates and forming ordered bimodal mesoporous silica MCM-48 spheres. The bimodal mesoporous MCM-48 was characterized by X-ray diffraction, transmission electron micrographs, FT-IR, and N2 adsorption-desorption, and a possible mechanism was proposed for the formation of bimodal mesoporous MCM-48.展开更多
Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic...Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic mesoporous silica(FDU-12) as a function of pore entrance size.Simple adjustments to the type of organic template and reaction temperature enable the successful synthesis of FDU-12 with controllable entrance sizes( 3,3-5 and 7 nm).Excellent anti-sintering properties are observed for FDU-12 with a sub-5-nm entrance size(3-5 nm) over a wide loading concentration(1.0-8.3 wt%) and the AuNPs can be stabilized within a 4.5-5.0-nm range after calcination at 550 ℃in air for 5 h.Smaller entrance size( 3 nm) prevents ingress of 3-nm AuNPs to the mesopores and results in low loading capacity and sintering.Conversely,FDU-12 possessing a larger entrance size(7 nm) shows promising anti-sintering properties at high loading concentrations,although catalytic performance is significantly lost at lower concentrations(e.g.2.1 wt%,14.2 ± 5.5 nm).Different anti-sintering mechanisms are proposed for each of the different FDU-12 entrance sizes.Additionally,catalytic data indicates that the obtained 4.5-nm AuNPs supported on FDU-12 with a sub-5-nm entrance size exhibit excellent mass-specific activity(1544 mmol g_(Au)^(-1) h^(-1)) and selectivity( 99%)at 230 ℃ for the gas-phase selective oxidation of cyclohexanol.展开更多
The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and i...The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment.展开更多
In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a func...In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.展开更多
Cobalt oxide catalysts supported on mesoporous silica (Co3O4/MPS) were prepared, characterized and applied for catalytic oxidation of NO. Effects of catalyst supports, calcination temperatures, H2O and SO2 on NO con...Cobalt oxide catalysts supported on mesoporous silica (Co3O4/MPS) were prepared, characterized and applied for catalytic oxidation of NO. Effects of catalyst supports, calcination temperatures, H2O and SO2 on NO conversion were investigated. The samples were also characterized by BET, XRD, FTIR and TG/DTG. The results suggested that Co3O4/MPS catalyst calcined at 573 K had the smallest crystal particles and the best surface dispersion. This catalyst had the highest activity and yielded 82% NO conversion at 573 K, at a space velocity of 12000 h^-1. Although the conversion of NO decreased with the introduction of H2O, it could be restored completely after removing residual H2O from Co3O4/MPS catalyst by heating at 573 K. In the presence of SO2, the oxidation activity decreased and COSO4 was detected on the catalyst. The NO conversion decreased to 30.2% in the presence of SO2 and H2O. It could not be restored completely after cutting off H2O and SO2. The deactivation of the catalyst in the presence of SO2 and H2O was attributed to the formation of cobalt sulfate species.展开更多
Mesoporous silica materials with high pore volume were successfully prepared by the chemical precipitation method, with water glass and a biodegradable nonionic surfactant polyethylene glycol (PEG). The obtained mat...Mesoporous silica materials with high pore volume were successfully prepared by the chemical precipitation method, with water glass and a biodegradable nonionic surfactant polyethylene glycol (PEG). The obtained materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analyzer and differential scanning calorimetry (TG-DSC), nitrogen adsorption-desorption measurements, and X-ray diffraction (XRD). The results showed that the changes of the pore parameters depended on both the surfactant content and heat treatment temperature. When the content of PEG was 10wt% and the obtained PEG/SiO2 composite was heated at 600℃, the mesoporous silica with a pore volume of 2.2 cma/g, a BET specific surface area of 361.55 m^2/g, and a diameter of 2-4 μm could be obtained. The obtained mesoporous silica materials have potential applications in the fields of paint and plastic, as thickening, reinforcing, and flatting agents.展开更多
Refractory antibiotics in domestic wastewater are hard to be completely eliminated by conventional methods,and then lead to severe environmental contamination and adverse effects on public health.In present work,advan...Refractory antibiotics in domestic wastewater are hard to be completely eliminated by conventional methods,and then lead to severe environmental contamination and adverse effects on public health.In present work,advanced oxidation processes(AOPs)are adopted to remove the antibiotic of sul-fachloropyridazine(SCP).Nanosized Mn_(2)O_(3) was fabricated on the SBA-15 material to catalytically acti-vate potassium peroxydisulfate(PDS)to generate reactive oxygen radicals of.OH and SO_(4).for SCP degradation.The effects of location and size of Mn_(2)O_(3) were explored through choosing either the as-made or template free SBA-15 as the precursor of substrate.Great influences from the site and size of Mn_(2)O_(3) on the oxidation activity were discovered.It was found that Mn_(2)O_(3) with a large size at the exterior of SBA-15(Mn-tfSBA)was slightly easier to degrade SCP at a low manganese loading of 1.0-2.0 mmol.g;however,complete SCP removal could only be achieved on the catalyst of Mn_(2)O_(3) with a refined size at the interior of SBA-15(Mn-asSBA).Moreover,the SO_(4).species were revealed to be the decisive radicals in the SCP degradation processes.Exploring the as-made mesoporous silica as a support provides a new idea for the further development of environmentally friendly catalysts.展开更多
A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium...A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium-based ionic polymers were confined into the nanopores of mesoporous silica nanospheres anchored with homogeneously distributed zinc salts.Owing to the flexible character and the reinforced cooperative effects of the ionic liquid(nucleophile)and zinc species(Lewis acid)in the confined mesoporous structure,the resultant composite exhibited dramatically improved catalytic performance in the cycloaddition of CO2 with epoxides to form cyclic carbonates.This was in contrast to that observed for the individual catalytic components.Moreover,such a solid catalyst could be easily recovered and reused four times without a significant loss of activity.展开更多
We applied a combination of inorganic mesoporous silica material,frequently used as drug carriers,and a natural organic polymer alginate(ALG),to establish a sustained drug delivery system for the poorly water-soluble ...We applied a combination of inorganic mesoporous silica material,frequently used as drug carriers,and a natural organic polymer alginate(ALG),to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin(IND).Mesoporous silica nanospheres(MSNs)were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis.After drug loading into the pores of aninopropyl functionalized MSNs(AP-MSNs),IND loaded AP-MSNs(IND-AP-MSNs)were encapsulated by ALG through the ionic interaction.The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption,zetapotential analysis and TGA analysis.The surface structure and surface charge changes of the ALG encapsulated AP-MSNs(ALG-AP-MSNs)were also investigated.The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG.We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.展开更多
Small Angle X-ray Scattering (SAXS) experiment using Synchrotron Radiation as X-ray source was used to determine the average wall thickness of mesoporous silica prepared by condensation of tetraethylorthosilicate (TEO...Small Angle X-ray Scattering (SAXS) experiment using Synchrotron Radiation as X-ray source was used to determine the average wall thickness of mesoporous silica prepared by condensation of tetraethylorthosilicate (TEOS) using non-ionic alkylpolyethyleneoxide (AEO(9)) surfactant as templates. The results agreed with that of high-resolution TEM (HRTEM) measurement.展开更多
FSM 16, MCM 41 and SBA 15 types of hexagonal mesoporous silica with a highly ordered 2 dimensional structure were synthesized by using different silicon sources and surfactants. In the 2 dimensional silicate fram...FSM 16, MCM 41 and SBA 15 types of hexagonal mesoporous silica with a highly ordered 2 dimensional structure were synthesized by using different silicon sources and surfactants. In the 2 dimensional silicate framework, pore size can be uniformly controlled by the combined use of the surfactants having different alkyl chain lengths and the swelling agents(triisopropyl benzene). The pore diameter of FSM 16 and MCM 41 can be expanded to be 10 nm, SBA 15 to be 15 nm. The crystal regularity was decreased with the increase of the pore diameter. In FSM 16 derived from kanemite(silicon source) and MCM 41 from water glass, their anionic characteristics on the pore wall may be stronger than those of SBA 15 derived from oligomeric tetramethoxysilane(TMOS). We have successfully used FSM 16 and MCM 41 to immobilize the enzyme having cationic residues below isoelectric point. The level of adsorption of enzymes in FSM 16 and MCM 41 was relatively high, but was low in SBA 15 support. The mechanism of enzyme to be adsorbed in mesoporous silica was suggested to be the ionic interactions. In aqueous solutions, horseradish peroxidase(HTP) was immobilized in FSM 16 with 8.9 nm mesopores and the highest loading amount(183 mg/mg FSM) was obtained, but for the FSM 16 of pore diameter 30 nm only an amount of 28 mg/mg FSM was obtained. The catalytic activity in the organic solvent was high when HRP was immobilized in FSM 16 and MCM 41, but it was low in case of SBA 15.展开更多
Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is a...Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is able to achieve intrafibrillar mineralization in the case of bone biomineral in vitro.Therefore,ACP precursors might be blended with any osteoconductive scaffold as a promising bone formation supplement for in-situ remineralization of collagens in bone.In this study,mesoporous silica nanoparticles with carboxyl-functionalized groups and ultra large-pores have been synthesized and used for the delivery of liquid like biomimetic precursors(ACP).The precursor delivery capacity of the nanoparticles was verified by the precursor release profile and successful mineralization of 2D and 3D collagen models.The nanoparticles could be completely degraded in 60 days and exhibited good biocompatibility as well.The successful translational strategy for biomineralization precursors showed that biomineralization precursor laden ultra large pore mesoporous silica possessed the potential as a versatile supplement in demineralized bone formation through the induction of intrafibrillar collagen mineralization.展开更多
Gene therapy using siRNA molecules is nowadays considered as a promising approach. For successful therapy, development of a stable and reliable vector for siRNA is crucial. Non-viral and non-organic vectors like mesop...Gene therapy using siRNA molecules is nowadays considered as a promising approach. For successful therapy, development of a stable and reliable vector for siRNA is crucial. Non-viral and non-organic vectors like mesoporous silica nanoparticles(MSN) are associated with lack of most viral vector drawbacks, such as toxicity, immunogenicity, but also generally a low nucleic acid carrying capacity. To overcome this hurdle, we here modified the pore walls of MSNs with surface-hyperbranching polymerized poly(ethyleneimine)(hbPEI), which provides an abundance of amino-groups for loading of a larger amount of siRNA molecules via electrostatic adsorption. After loading, the particles were covered with a second layer of pre-polymerized PEI to provide better protection of siRNA inside the pores, more effective cellular uptake and endosomal escape. To test the transfection efficiency of PEI covered si RNA/MSNs, MDA-MB 231 breast cancer cells stably expressing GFP were used. We demonstrate that PEI-coated si RNA/MSN complexes provide more effective delivery of si RNAs compared to unmodified MSNs. Thus, it can be concluded that appropriately surface-modified MSNs can be considered as prospective vectors for therapeutic siRNA delivery.展开更多
In this study,using mesoporous silica for the solubility enhancement of poorly watersoluble drug was investigated.Although the incorporating drug into mesoporous silica is generally performed through the solvent meth...In this study,using mesoporous silica for the solubility enhancement of poorly watersoluble drug was investigated.Although the incorporating drug into mesoporous silica is generally performed through the solvent method,the new melting method was proposed in the present study.Fenofibrate,a poorly water-soluble drug,was incorporated into mesoporous silica by solvent method and melting method.The obtained samples were observed by SEM and their physicochemical properties were evaluated by PXRD and DSC measurement.The dissolution and supersaturated property were also investigated.The results from SEM,PXRD and DSC measurement showed that drug could be loaded into pore via the melting method as well as by the solvent method.The drug loaded quantity depended on the pore volume.Drug up to 33%could be incorporated into mesoporous silica and existed in amorphous state.When drug was overloaded or difficulty in incorporation into pore was found,recrystallization of drug occurred at the outer surface of mesoporous silica.From the dissolution test,samples prepared by solvent method and melting method gave the supersaturated drug concentration which sample from melting method showed superior dissolution to the one from solvent method.From this study,drug was efficiently incorporated into mesoporous silica by the melting method which is a simple and solvent-free process,and the aqueous solubility enhancement of poorly watersoluble drug was achieved.展开更多
基金supported by the National Key R&D program of China(2019YFA0706802)National Natural Science Foundation of China(52063029)+2 种基金Natural Science Basic Research Program of Shaanxi(2022JM-200,2021JQ-716)China Postdoctoral Science Foundation(2020M672269)Doctoral Research Program of Yan’an University(YDBK2019-02)
文摘Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially accessible internal spaces,and so forth.Dissimilar guest species(such as organic groups or metal nanoparticles)could be readily decorated onto the interfaces of the channels and pores,realizing the functionalization of dendritic mesoporous silica nanoparticles for targeted applications.As adsorbents and catalysts,dendritic mesoporous silica nanoparticles-based materials have experienced nonignorable development in CO_(2)capture and catalytic conversion.This comprehensive review provides a critical survey on this pregnant subject,summarizing the designed construction of novel dendritic mesoporous silica nanoparticles-based materials,the involved chemical reactions(such as CO_(2)methanation,dry reforming of CH_(4)),the value-added chemicals from CO_(2)(such as cyclic carbonates,2-oxazolidinones,quinazoline-2,4(1H,3H)-diones),and so on.The adsorptive and catalytic performances have been compared with traditional silica mesoporous materials(such as SBA-15 or MCM-41),and the corresponding reaction mechanisms have been thoroughly revealed.It is sincerely expected that the in-depth discussion could give materials scientists certain inspiration to design brand-new dendritic mesoporous silica nanoparticles-based materials with superior capabilities towards CO_(2)capture,utilization,and storage.
基金supported by the National Key R&D Program of China(No.2018YFD0901004)the National Natural Science Foundation of China(No.31601538)+2 种基金the Key Science and Technology Program of Liaoning Province(No.2020JH1/10200001)the Fundamental Research Foundation of Education Department of Liaoning Province(No.JL202008)the Science&Technology Innovation Foundation of Dalian(No.2019J12SN61).
文摘Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidine dithiocarbamate(APDC)and externally with alkyl-diol groups,which was named as Diol-APDC-SBA15,was successfully developed and characterized by powder X-ray diffraction patterns,nitrogen adsorption,and Fourier transform infrared spectroscopy.The solutions with lead,chromium,cadmium,and copper were used to investigate the adsorption capacity of Diol-APDC-SBA15.Diol-APDC-SBA15 was adopted to remove heavy metals from cooking liquids of clams(Ruditapes philippinarum),hydrolysate liquids of oysters(Ostrea gigas Thunberg),and polysaccharide solution from the cooking liquid of R.philippinarum.The efficiencies of removing heavy metal ions and the loss rates of proteins and polysaccharides were examined.The results showed that the adsorption capacities of Diol-APDCSBA15 for Pb,Cr,Cd,and Cu in standard heavy-metal solutions were 161.4,166.1,29.6,and 60.2mgg^(−1),respectively.The removal efficiency of Diol-APDC-SBA15 for Pb in the three shellfish processing liquids ranged from 60.5%to 99.6%.The Cr removal efficiency was above 99.9%in the oyster hydrolysate liquid.Meanwhile,the percentages of polysaccharide loss were 5.5%and 3.7%in the cooking liquid of clam and polysaccharide solution,respectively,and the protein loss was 1.2%in the oyster hydrolysate liquid.Therefore,the Diol-APDC-SBA15 material exhibits a great potential application in the removal of heavy metals from shellfish processing liquids with low losses of proteins and polysaccharides.
文摘The weak adhesion between nanocarriers and the intestinal mucosa was one of the main reasons caused the failure in oral delivery.Inspired by the“antiskid tires”with complex chiral patterns,mesoporous silica nanoparticles AT-R@CMSN exhibiting geometrical chiral structure were designed to improve the surface/interface roughness in nanoscale,and employed as the hosting system for insoluble drugs nimesulide(NMS)and ibuprofen(IBU).Once performing the delivery tasks,AT-R@CMSN with rigid skeleton protected the loaded drug and reduced the irritation of drug on gastrointestinal tract(GIT),while their porous structure deprived drug crystal and improved drug release.More importantly,AT-R@CMSN functioned as“antiskid tire”to produce higher friction on intestinal mucosa and substantively influencedmultiple biological processes,including“contact”,“adhesion”,“retention”,“permeation”and“uptake”,compared to the achiral S@MSN,thereby improving the oral adsorption effectiveness of such drug delivery systems.By engineering AT-R@CMSN to overcome the stability,solubility and permeability bottlenecks of drugs,orally administered NMS or IBU loaded AT-R@CMSN could achieve higher relative bioavailability(705.95%and 444.42%,respectively)and stronger anti-inflammation effect.In addition,AT-R@CMSN displayed favorable biocompatibility and biodegradability.Undoubtedly,the present finding helped to understand the oral adsorption process of nanocarriers,and provided novel insights into the rational design of nanocarriers.
基金the National Natural Science Foundation of China(No.50772131)the National High-tech R&D Program of China(863 Program)(No.2011AA322100)+1 种基金the Key Project of Chinese Ministry of Education(No.106086)the Fundamental Research Funds for the Central Universities(No.2010YJ05)。
文摘A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%),namely,mesoporous silica capsule(MSC)with core-shell structure.Transmission electron microscopy(TEM),nitrogen adsorption and other characterization techniques were used to study the formation process of nano-microspheres.A new mechanism of self-adaptive concentration gradient regulation of silicon migration and recombination core-shell structure was proposed to explain the formation of a cavity in the MSC system.The core-shell design can enhance the specific surface area and pore volume while maintaining the monodispersity and mesoporous size.To study the water harvesting performance of MSC,solid silica nanoparticles(SSN)and mesoporous silica nanoparticles(MSN)were prepared.In a small atmospheric water collection test(25℃,40%RH),the water vapour adsorption and desorption kinetics of MSC,SSN,MSN and a commercial silica gel(CSG)were compared and analyzed.The results show that the MSC with mesoporous channels and core-shell structure can provide about 0.324 gwater/gadsorbent,79%higher than the CSG(0.181 gwater/gadsorbent).It is 25.1%higher than that of 0.259 gwater/gadsorbentof un-hollowed MSN and 980%higher than that of0.03 gwater/gadsorbentof un-hollowed SSN.The material has a large specific surface area and pore volume,simple preparation method and low cost,which provides a feasible idea for realising atmospheric water collection in arid and semi-arid regions.
基金We acknowledge the teachers from the Institute of Radiation Medicine,Chinese Academy of Medical Sciences for the I/R help in animal experiments。
文摘Background:Currently,no drugs can specifically improve clinical cardiac ischemia-reperfusion injury or the prognosis of hemodialysis.Salvianolic acid B(SalB)is a widely used cardiac protectant;however,its clinical application is limited by its low oral bioavailability and poor intestinal absorption.The exploration of its preparation and clinical applications has become a research hotspot in recent years.Methods:To determine whether mesoporous silica nanoparticles(MSNs)efficiently delivered SalB to the heart and SalB@MSNs-RhB reduced myocardial ischemia-reperfusion injury,we constructed a myocardial ischemia-reperfusion male rat model,hypoxia/reoxygenation cardiomyocytes,and treated them with SalB@MSNs-RhB.Results:SalB@MSNs-RhB showed improved bioavailability,therapeutic effect,heightened JAK2/STAT3-dependent pro-survival signaling,and antioxidant responses,thereby protecting cardiomyocytes from ischemia-reperfusion injury-induced oxidative stress and apoptosis.Conclusion:This use of SalB-loaded nanoparticles and investigation of their mechanism of action may provide a new strategy for treating cardiomyocytes.Thus,hypoxia/reoxygenation promotes the clinical application of SalB.
基金supported by the National Nature Science Foundation of China(21276117,21376111,21406092)~~
文摘A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and metal source respectively.These materials were then characterized through X-ray diffraction(XRD),transmission electron microscopy(TEM),Raman spectroscopy,Fourier transform infrared spectra(FTIR),diffuse reflectance spectra(DRS),and N2 adsorption-desorption,which were found to contain tungsten species that were effectively dispersed throughout the structure.The as-prepared materials W-SiO2 were also found to possess a mesoporous structure.The pore diameters of the respective sample W-SiO2-20 determined from the TEM images ranged from 2 to 4 nm,which was close to the average pore size determined from the nitrogen desorption isotherm(2.9 nm).The materials were evaluated as catalysts for the heterogeneous oxidative desulfurization of dibenzothiophene(DBT),which is able to achieve deep desulfurization within 40 min under the optimal conditions(Catalyst(W-SiO2-20)= 0.01 g,temperature = 60℃,oxidant(H2O2)= 20 μL).For the removal of different organic sulfur compounds within oil,the ability of the catalyst(W-SiO2-20) under the same conditions to remove sulfur compounds decreased in the order:4,6-dimethyldibenzothiophene Dibenzothiophene Benzothiophene 1-dodecanethiol.Additionally,they did not require organic solvents as an extractant in the heterogeneous oxidative desulfurization process.After seven separate catalytic cycles,the desulfurization efficiency was still as high as 90.3%.From the gas chromatography-mass spectrometer analysis,DBT was entirely oxidized to its corresponding sulfone DBTO2 after reaction.A mechanism for the heterogeneous desulfurization reaction was proposed.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20872135) and the China National Tobacco Corporation (No.110200701007).
文摘The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild- temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for simultaneously removing organic templates and forming ordered bimodal mesoporous silica MCM-48 spheres. The bimodal mesoporous MCM-48 was characterized by X-ray diffraction, transmission electron micrographs, FT-IR, and N2 adsorption-desorption, and a possible mechanism was proposed for the formation of bimodal mesoporous MCM-48.
基金supported by the National Natural Science Foundation of China(21222307,21373181,21403197,91545113,21503189)the Fundamental Research Funds for the Central Universities(2014XZZX003-02)+1 种基金Zhejiang Provincial Natural Science Foundation(LY15B030009)China Postdoctoral Science Foundation(2014M550333,2015T80636)~~
文摘Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic mesoporous silica(FDU-12) as a function of pore entrance size.Simple adjustments to the type of organic template and reaction temperature enable the successful synthesis of FDU-12 with controllable entrance sizes( 3,3-5 and 7 nm).Excellent anti-sintering properties are observed for FDU-12 with a sub-5-nm entrance size(3-5 nm) over a wide loading concentration(1.0-8.3 wt%) and the AuNPs can be stabilized within a 4.5-5.0-nm range after calcination at 550 ℃in air for 5 h.Smaller entrance size( 3 nm) prevents ingress of 3-nm AuNPs to the mesopores and results in low loading capacity and sintering.Conversely,FDU-12 possessing a larger entrance size(7 nm) shows promising anti-sintering properties at high loading concentrations,although catalytic performance is significantly lost at lower concentrations(e.g.2.1 wt%,14.2 ± 5.5 nm).Different anti-sintering mechanisms are proposed for each of the different FDU-12 entrance sizes.Additionally,catalytic data indicates that the obtained 4.5-nm AuNPs supported on FDU-12 with a sub-5-nm entrance size exhibit excellent mass-specific activity(1544 mmol g_(Au)^(-1) h^(-1)) and selectivity( 99%)at 230 ℃ for the gas-phase selective oxidation of cyclohexanol.
基金the Hunan Provincial Natural Science Foundation of China (No. 07 JJ4003)
文摘The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment.
基金supported by the Chinese Natural Science Foundation Project (Grant No. 30970784 and 81171455)a National Distinguished Young Scholars Grant (Grant No. 31225009) from the National Natural Science Foundation of China+5 种基金the National Key Basic Research Program of China (Grant No. 2009CB930200)the Chinese Academy of Sciences (CAS) ‘Hundred Talents Program’ (Grant No. 07165111ZX)the CAS Knowledge Innovation Program, and the State HighTech Development Plan (Grant No. 2012AA020804)the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (Grant No. XDA09030301)NIH/NIMHD 8 G12 MD007597USAMRMC W81XWH-10-1-0767 grants
文摘In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.
文摘Cobalt oxide catalysts supported on mesoporous silica (Co3O4/MPS) were prepared, characterized and applied for catalytic oxidation of NO. Effects of catalyst supports, calcination temperatures, H2O and SO2 on NO conversion were investigated. The samples were also characterized by BET, XRD, FTIR and TG/DTG. The results suggested that Co3O4/MPS catalyst calcined at 573 K had the smallest crystal particles and the best surface dispersion. This catalyst had the highest activity and yielded 82% NO conversion at 573 K, at a space velocity of 12000 h^-1. Although the conversion of NO decreased with the introduction of H2O, it could be restored completely after removing residual H2O from Co3O4/MPS catalyst by heating at 573 K. In the presence of SO2, the oxidation activity decreased and COSO4 was detected on the catalyst. The NO conversion decreased to 30.2% in the presence of SO2 and H2O. It could not be restored completely after cutting off H2O and SO2. The deactivation of the catalyst in the presence of SO2 and H2O was attributed to the formation of cobalt sulfate species.
基金the National Natural Science Foundation of China (No.20671010, 20236020, 20325621, 50642042).
文摘Mesoporous silica materials with high pore volume were successfully prepared by the chemical precipitation method, with water glass and a biodegradable nonionic surfactant polyethylene glycol (PEG). The obtained materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analyzer and differential scanning calorimetry (TG-DSC), nitrogen adsorption-desorption measurements, and X-ray diffraction (XRD). The results showed that the changes of the pore parameters depended on both the surfactant content and heat treatment temperature. When the content of PEG was 10wt% and the obtained PEG/SiO2 composite was heated at 600℃, the mesoporous silica with a pore volume of 2.2 cma/g, a BET specific surface area of 361.55 m^2/g, and a diameter of 2-4 μm could be obtained. The obtained mesoporous silica materials have potential applications in the fields of paint and plastic, as thickening, reinforcing, and flatting agents.
基金funding support from National Natural Science Foundation of China (51602133)State Key Laboratory of Materials-Oriented Chemical Engineering (KL19-05)
文摘Refractory antibiotics in domestic wastewater are hard to be completely eliminated by conventional methods,and then lead to severe environmental contamination and adverse effects on public health.In present work,advanced oxidation processes(AOPs)are adopted to remove the antibiotic of sul-fachloropyridazine(SCP).Nanosized Mn_(2)O_(3) was fabricated on the SBA-15 material to catalytically acti-vate potassium peroxydisulfate(PDS)to generate reactive oxygen radicals of.OH and SO_(4).for SCP degradation.The effects of location and size of Mn_(2)O_(3) were explored through choosing either the as-made or template free SBA-15 as the precursor of substrate.Great influences from the site and size of Mn_(2)O_(3) on the oxidation activity were discovered.It was found that Mn_(2)O_(3) with a large size at the exterior of SBA-15(Mn-tfSBA)was slightly easier to degrade SCP at a low manganese loading of 1.0-2.0 mmol.g;however,complete SCP removal could only be achieved on the catalyst of Mn_(2)O_(3) with a refined size at the interior of SBA-15(Mn-asSBA).Moreover,the SO_(4).species were revealed to be the decisive radicals in the SCP degradation processes.Exploring the as-made mesoporous silica as a support provides a new idea for the further development of environmentally friendly catalysts.
基金supported by the National Natural Science Foundation of China(201573136,21603128,U1510105)the Natural Science Foundation for Young Scientists of Shanxi Province(2016021034)the Scientific Research Start-up Funds of Shanxi University(RSC723)~~
文摘A rational integration of multiple reactive centers into a combined unit to facilitate their cooperative effects is a smart approach for accelerating the catalytic activity.Here,to achieve this goal,linear imidazolium-based ionic polymers were confined into the nanopores of mesoporous silica nanospheres anchored with homogeneously distributed zinc salts.Owing to the flexible character and the reinforced cooperative effects of the ionic liquid(nucleophile)and zinc species(Lewis acid)in the confined mesoporous structure,the resultant composite exhibited dramatically improved catalytic performance in the cycloaddition of CO2 with epoxides to form cyclic carbonates.This was in contrast to that observed for the individual catalytic components.Moreover,such a solid catalyst could be easily recovered and reused four times without a significant loss of activity.
基金This work was supported by National Basic Research Program of China(973 Program)(2009CB930300)National Natural Science Foundation of China(81072605)Shenyang Special Fund for Exploration of Intellectual Resources.
文摘We applied a combination of inorganic mesoporous silica material,frequently used as drug carriers,and a natural organic polymer alginate(ALG),to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin(IND).Mesoporous silica nanospheres(MSNs)were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis.After drug loading into the pores of aninopropyl functionalized MSNs(AP-MSNs),IND loaded AP-MSNs(IND-AP-MSNs)were encapsulated by ALG through the ionic interaction.The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption,zetapotential analysis and TGA analysis.The surface structure and surface charge changes of the ALG encapsulated AP-MSNs(ALG-AP-MSNs)were also investigated.The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG.We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.
文摘Small Angle X-ray Scattering (SAXS) experiment using Synchrotron Radiation as X-ray source was used to determine the average wall thickness of mesoporous silica prepared by condensation of tetraethylorthosilicate (TEOS) using non-ionic alkylpolyethyleneoxide (AEO(9)) surfactant as templates. The results agreed with that of high-resolution TEM (HRTEM) measurement.
文摘FSM 16, MCM 41 and SBA 15 types of hexagonal mesoporous silica with a highly ordered 2 dimensional structure were synthesized by using different silicon sources and surfactants. In the 2 dimensional silicate framework, pore size can be uniformly controlled by the combined use of the surfactants having different alkyl chain lengths and the swelling agents(triisopropyl benzene). The pore diameter of FSM 16 and MCM 41 can be expanded to be 10 nm, SBA 15 to be 15 nm. The crystal regularity was decreased with the increase of the pore diameter. In FSM 16 derived from kanemite(silicon source) and MCM 41 from water glass, their anionic characteristics on the pore wall may be stronger than those of SBA 15 derived from oligomeric tetramethoxysilane(TMOS). We have successfully used FSM 16 and MCM 41 to immobilize the enzyme having cationic residues below isoelectric point. The level of adsorption of enzymes in FSM 16 and MCM 41 was relatively high, but was low in SBA 15 support. The mechanism of enzyme to be adsorbed in mesoporous silica was suggested to be the ionic interactions. In aqueous solutions, horseradish peroxidase(HTP) was immobilized in FSM 16 with 8.9 nm mesopores and the highest loading amount(183 mg/mg FSM) was obtained, but for the FSM 16 of pore diameter 30 nm only an amount of 28 mg/mg FSM was obtained. The catalytic activity in the organic solvent was high when HRP was immobilized in FSM 16 and MCM 41, but it was low in case of SBA 15.
基金the National Natural Science Foundation of China(No.81600911).
文摘Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is able to achieve intrafibrillar mineralization in the case of bone biomineral in vitro.Therefore,ACP precursors might be blended with any osteoconductive scaffold as a promising bone formation supplement for in-situ remineralization of collagens in bone.In this study,mesoporous silica nanoparticles with carboxyl-functionalized groups and ultra large-pores have been synthesized and used for the delivery of liquid like biomimetic precursors(ACP).The precursor delivery capacity of the nanoparticles was verified by the precursor release profile and successful mineralization of 2D and 3D collagen models.The nanoparticles could be completely degraded in 60 days and exhibited good biocompatibility as well.The successful translational strategy for biomineralization precursors showed that biomineralization precursor laden ultra large pore mesoporous silica possessed the potential as a versatile supplement in demineralized bone formation through the induction of intrafibrillar collagen mineralization.
基金supported in part by Russian Science Founda-tion grant 17-15-01230(biological characterization)Academy of Finland project nos.284542,384542(JMR)+2 种基金Jane and Aatos Erkko Foundation(EC)Anna Egorova is supported by President of Russian Federation scholarship(SP-2162.2015.4)Anna Slita was supported by the scholarship within Saint Pe-tersburg State University bilateral exchange program for study abroad
文摘Gene therapy using siRNA molecules is nowadays considered as a promising approach. For successful therapy, development of a stable and reliable vector for siRNA is crucial. Non-viral and non-organic vectors like mesoporous silica nanoparticles(MSN) are associated with lack of most viral vector drawbacks, such as toxicity, immunogenicity, but also generally a low nucleic acid carrying capacity. To overcome this hurdle, we here modified the pore walls of MSNs with surface-hyperbranching polymerized poly(ethyleneimine)(hbPEI), which provides an abundance of amino-groups for loading of a larger amount of siRNA molecules via electrostatic adsorption. After loading, the particles were covered with a second layer of pre-polymerized PEI to provide better protection of siRNA inside the pores, more effective cellular uptake and endosomal escape. To test the transfection efficiency of PEI covered si RNA/MSNs, MDA-MB 231 breast cancer cells stably expressing GFP were used. We demonstrate that PEI-coated si RNA/MSN complexes provide more effective delivery of si RNAs compared to unmodified MSNs. Thus, it can be concluded that appropriately surface-modified MSNs can be considered as prospective vectors for therapeutic siRNA delivery.
文摘In this study,using mesoporous silica for the solubility enhancement of poorly watersoluble drug was investigated.Although the incorporating drug into mesoporous silica is generally performed through the solvent method,the new melting method was proposed in the present study.Fenofibrate,a poorly water-soluble drug,was incorporated into mesoporous silica by solvent method and melting method.The obtained samples were observed by SEM and their physicochemical properties were evaluated by PXRD and DSC measurement.The dissolution and supersaturated property were also investigated.The results from SEM,PXRD and DSC measurement showed that drug could be loaded into pore via the melting method as well as by the solvent method.The drug loaded quantity depended on the pore volume.Drug up to 33%could be incorporated into mesoporous silica and existed in amorphous state.When drug was overloaded or difficulty in incorporation into pore was found,recrystallization of drug occurred at the outer surface of mesoporous silica.From the dissolution test,samples prepared by solvent method and melting method gave the supersaturated drug concentration which sample from melting method showed superior dissolution to the one from solvent method.From this study,drug was efficiently incorporated into mesoporous silica by the melting method which is a simple and solvent-free process,and the aqueous solubility enhancement of poorly watersoluble drug was achieved.