期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Study on a Mesoscale Convective Vortex Causing Heavy Rainfall during the Mei-yu Season in 2003 被引量:17
1
作者 孙建华 赵思雄 +1 位作者 徐广阔 孟庆涛 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第5期1193-1209,共17页
The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the... The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV. 展开更多
关键词 mesoscale convective system mesoscale convective vortex doppler radar WRF model
下载PDF
A Numerical Study of the Evolution of a Mesoscale Convective Vortex on the Meiyu Front 被引量:1
2
作者 王金鑫 潘益农 王石成 《Acta meteorologica Sinica》 SCIE 2013年第6期889-909,共21页
The Advanced Research WRF(Weather Research and Forecasting) model is used to simulate the evolution of a mesoscale convective vortex(MCV) that formed on the Meiyu front and lasted for more than two days. The simul... The Advanced Research WRF(Weather Research and Forecasting) model is used to simulate the evolution of a mesoscale convective vortex(MCV) that formed on the Meiyu front and lasted for more than two days. The simulation is used to investigate the underlying reasons for the genesis, intensification, and vertical expansion of the MCV. This MCV is of a type of mid-level MCV that often develops in the stratiform regions of mesoscale convective systems. The vortex strengthened and reached its maximum intensity and vertical extent(from the surface to upper levels) when secondary organized convection developed within the mid-level circulation. The factors controling the evolution of the kinetic and thermal structure of the MCV are examined through an analysis of the budgets of vorticity, temperature, and energy. The evolution of the local Rossby radius of deformation reveals the interrelated nature of the MCV and its parent mesoscale convective system. 展开更多
关键词 mesoscale convective vortex vorticity budget temperature budget energy budget Rossby deformation radius
原文传递
A Study of Structure and Mechanism of a Meso-beta-scale Convective Vortex and Associated Heavy Rainfall in the Dabie Mountain Area Part I: Diagnostic Analysis of the Structure 被引量:5
3
作者 徐文慧 倪允琪 +3 位作者 汪小康 邱学兴 宝兴华 金文岩 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1159-1176,共18页
An analysis was conducted on the evolutional process of a mesoscale convective vortex (MCV) and associated heavy rainfall in the Dabie Mountain area on 21-22 June 2008,as well as their structural characteristics in ... An analysis was conducted on the evolutional process of a mesoscale convective vortex (MCV) and associated heavy rainfall in the Dabie Mountain area on 21-22 June 2008,as well as their structural characteristics in different stages,by using the mesoscale reanalysis data with 3 km and 1 h resolution generated by the Local Analysis and Prediction System (LAPS) in the Southern China Heavy Rainfall Experiment.The results showed that the latent heat released by convection in the midtroposphere was the main energy source for the development of a low-level vortex.There was a positive feedback interaction between the convection and the vortex,and the evolution of the MCV was closely related to the strength of the positive interaction.The most typical characteristics of the thermal structure in different stages were that,there was a relatively thin diabatic heating layer in the midtroposphere in the formative stage;the thickness of diabatic heating layer significantly increased in the mature stage;and it almost disappeared in the decay stage.The characteristics of the dynamic structure were that,in the formative stage,there was no anticyclonic circulation at the high level;in the mature stage,an anticyclonic circulation with strong divergence was formed at the high level;in the decay stage,the anticyclonic circulation was damaged and the high-level atmosphere was in a disordered state of turbulence.Finally,the structural schematics of the MCV in the formative and mature stage were established respectively. 展开更多
关键词 mesoscale reanalysis data mesoscale convective vortex (MCV) strong convection positive feedback structural schematics
下载PDF
Initiation and Evolution of Long-Lived Eastward-Propagating Mesoscale Convective Systems over the Second-Step Terrain along Yangtze-Huaihe River Valley 被引量:1
4
作者 Yuanchun ZHANG Jianhua SUN +1 位作者 Ruyi YANG Ruoyun MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第5期763-781,共19页
Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for... Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for model-based sensitivity testing to investigate the initiation and evolution of these types of MCSs as well as their impact on downstream areas.We subject each MCS to a semi-idealized(CNTL)simulation and a sensitivity(NOLH)simulation that neglects condensational heating in the formation region.The CNTL experiment reveals convection forms in the region downstream of a shortwave trough typified by persistent southwesterly winds in the low-to midtroposphere.Upon merging with other convective systems,moist convection develops into an MCS,which propagates eastward under the influence of mid-tropospheric westerlies,and moves out of the second-step terrain.The MCS then merges with pre-existing local convection over the plains;the merged convection reinforces the cyclonic wind perturbation into a mesoscale vortex at 850 hPa.While this vortex moves eastward to regions with local vortex at 850 hPa,another vortex at 925 hPa is also intensified.Finally,the vortices at 850 and 925 hPa merge together and develop into a mesoscale convective vortex(MCV).In contrast,MCSs fail to form and move eastward in the NOLH experiment.In the absence of eastward-propagating MCSs,moist convection and mesoscale vortices still appear in the plains,but the vortex strength and precipitation intensity are significantly weakened.It is suggested the eastward-propagating MCSs over the second-step terrain significantly impact the development and enhancement of moist convection and vortices in the downstream areas. 展开更多
关键词 mesoscale convective systems second-step terrain mesoscale convective vortex numerical sensitivity simulation
下载PDF
SPATIAL AND TEMPORAL DISTRIBUTION OF MESOSCALE CONVECTIVE VORTICES IN EAST CHINA AND THE WESTERN PACIFIC REGION
5
作者 杨程 王元 +3 位作者 冀春晓 姜瑜君 王丽吉 康丽莉 《Journal of Tropical Meteorology》 SCIE 2018年第2期185-198,共14页
Data from high-resolution satellites were used to evaluate the spatial and temporal distribution of mesoscale convective vortices(MCVs) in central and east China and the western Pacific Ocean region. The monthly varia... Data from high-resolution satellites were used to evaluate the spatial and temporal distribution of mesoscale convective vortices(MCVs) in central and east China and the western Pacific Ocean region. The monthly variation in MCVs was significant. From May to October, MCVs were clearly affected by large-scale environmental conditions,including the South Asian summer monsoon, subtropical high and solar radiation, which resulted in clear changes in MCV spatial distributions from strengthening and weakening processes. Based on the analysis of diurnal MCV variations and the precipitation rate from May to October, MCVs were found to occur more frequently over the ocean than over land. MCVs near the Sea of Japan and northern South China Sea occurred during all types of weather. Ocean occurrences near land, such as the Ryukyu Islands, were categorized as morning-active MCVs. The hilly regions of southeastern China and North China Plain were characterized by afternoon-active MCVs. Limited to topography and the urban heat island effect, the Beijing-Tianjin-Tangshan area had evening-active MCVs, while Changbai Mountain had nocturnal MCVs. 展开更多
关键词 mesoscale convective vortex SATELLITES CLIMATOLOGY
下载PDF
A Simulation Study of the Mesoscale Convective Systems Associated with a Meiyu Frontal Heavy Rain Event 被引量:16
6
作者 张进 谈哲敏 《Acta meteorologica Sinica》 SCIE 2009年第4期438-454,共17页
In this study, evolution of the mesoscale convective systems (MCSs) within a Meiyu front during a particularly heavy rainfall event on 22 June 1999 in East China was simulated by using a nonhydrostatic numerical mod... In this study, evolution of the mesoscale convective systems (MCSs) within a Meiyu front during a particularly heavy rainfall event on 22 June 1999 in East China was simulated by using a nonhydrostatic numerical model ARPS (Advanced Regional Prediction System). Investigations were conducted with emphasis on the impact of the interaction among multi-scale weather systems (MWSs) on the development of MCSs in the Meiyu frontal environment. For this case, the development of MCSs experienced three different stages. (1) The convections associated with MCSs were firstly triggered by the eastward-moving Southwest Vortex (SWV) from the Sichuan Basin, accompanying the intensification of the upper-level jet (ULJ) and the low-level jet (LLJ) that were approaching the Meiyu front. (2) Next, a low-level shear line (LSL) formed, which strengthened and organized the MCSs after the SWV decayed. Meanwhile, the ULJ and LLJ enhanced and produced favorable conditions for the MCSs development. (3) Finally, as the MCSs got intensified, a mesoscale convective vortex (MCV), a mesoscale LLJ and a mesoscale ULJ were established. Then a coupled-development of MWSs was achieved through the vertical frontal circulations, which further enhanced the MCV and resulted in the heavy rainfall. This is a new physical mechanism for the formation of Meiyu heavy rainfall related to the SWV during the warm season in East China. In the three stages of the heavy rainfall, the vertical frontal circulations exhibited distinguished structures and played a dynamic role, and they enhanced the interaction among the MWSs. A further examination on the formation and evolution of the MCV showed that the MCV was mainly caused by the latent heat release of the MCSs, and the positive feedback between the MCSs and MCV was a key characteristic of the scale interaction in this case. 展开更多
关键词 mesoscale convective systems (MCSs) Meiyu front mesoscale convective vortex (MCV) scale interaction
原文传递
The Evolution of a Meso-β-Scale Convective Vortex in the Dabie Mountain Area 被引量:1
7
作者 徐文慧 倪允琪 +1 位作者 汪小康 邱学兴 《Acta meteorologica Sinica》 SCIE 2012年第5期597-613,共17页
The evolution of a mesoscale convective system (MCS) that caused strong precipitation in the northern area of Dabie Mountain during 21 22 June 2008 is analyzed, along with the evolution of the associated meso-β-sca... The evolution of a mesoscale convective system (MCS) that caused strong precipitation in the northern area of Dabie Mountain during 21 22 June 2008 is analyzed, along with the evolution of the associated meso-β-scale convective vortex (MCV). The mesoscale reanalysis data generated by the Local Analysis and Prediction System (LAPS) at a 3-km horizontal resolution and a 1-h time resolution during the South China Heavy Rainfall Experiment (SCHeREX) were utilized. The results show that two processes played key roles in the enhancement of convective instability. First, the mesoscale low-level jet strengthened and shifted eastward, leading to the convergence of warm-wet airflow and increasing convective instability at middle and low levels. Second, the warm-wet airflow interacted with the cold airflow from the north, causing increased vertical vorticity in the vicinity of steeply sloping moist isentropic surfaces. The combined action of these two processes caused the MCS to shift progressively eastward. Condensation associated with the MCS released latent heat and formed a layer of large diabatic heating in the middle troposphere, increasing the potential vorticity below this layer. This increase in potential vorticity created favorable conditions for the development of a low-level vortex circulation. The vertical motion associated with this low-level vortex further promoted the development of convection, creating a positive feedback between the deep convection and the low-level vortex circulation. This feedback mechanism not only promoted the maturation of the MCS, but also played the primary role in the evolution of the MCV. The MCV formed and developed due to the enhancement of the positive feedback that accompanied the coming together of the center of the vortex and the center of the convection. The positive feedback peaked and the MCV matured when these two centers converged. The positive feedback weakened and the MCV began to decay as the two centers separated and diverged. 展开更多
关键词 mesoscale reanalysis data mesoscale convective vortex mesoscale convective system evolu-tional mechanism positive feedback
原文传递
Characteristics of Mesoscale Vortices over China in 2015
8
作者 Yu SHU Jisong SUN Yinong PAN 《Journal of Meteorological Research》 SCIE CSCD 2017年第6期1149-1160,共12页
Mesoscale vortices, which appear at middle and lower levels of rainstorms, are cyclonic circulations with a size ranging from tens of kilometers to several hundred kilometers. Mesoscale vortices often have close relat... Mesoscale vortices, which appear at middle and lower levels of rainstorms, are cyclonic circulations with a size ranging from tens of kilometers to several hundred kilometers. Mesoscale vortices often have close relationships with convective activities. The ERA-Interim dataset and an automatic vortex-searching method were used to identify the mesoscale vortices occurring over China in 2015 and their basic characteristics were analyzed. The mesoscale vortices are divided into three categories: mesoscale convective vortices, mesoscale stratiform vortices, and mesoscale dry vortices. The mesoscale convective vortices have the largest intensity, size, and duration, whereas the mesoscale dry vortices have the smallest. Mesoscale convective vortices are able to form in any direction of the parent mesoscale convective system, although the secondary convection tends to appear to the southeast of the parent vortices. The mesoscale vortices tend to generate in the transition area between high and low altitudes. The leeward side of the Tibetan Plateau is the main source region of mesoscale vortices in China. Most of vortices are generated at midday and midnight. The activities of mesoscale convective vortices and mesoscale stratiform vortices peak in summer, whereas those of the mesoscale dry vortices peak in winter. 展开更多
关键词 mesoscale vortex mesoscale convective vortex mesoscale convective system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部